
Ant Colony Optimization

Part 4: Implementing ACO Algorithms

Spring 2009

Instructor: Dr. Masoud Yaghini



Ant Colony Optimization: Part 4

Outline

� Data Structures

� The Algorithm

� Changes for Other ACO Algorithms

� References



Data Structures



Ant Colony Optimization: Part 4

Data Structures

� We mainly focus on AS and indicate, where 

appropriate, the necessary changes for 

implementing other ACO algorithms.

� Data Structures

– Problem Representation– Problem Representation

� Intercity Distances

� Nearest-Neighbor Lists

� Pheromone Trails

� Combining Pheromone and Heuristic Information

– Representing Ants

� Ant’s Memory Storing (partial) Tours

� Visited Cities



Ant Colony Optimization: Part 4

Main data structures



Ant Colony Optimization: Part 4

Intercity Distances

� Often a symmetric TSP instance is given as the 

coordinates of a number of n points.

� In this case, one possibility would be to store the x 

and y coordinates of the cities in two arrays and 

then compute on the fly the distance between the then compute on the fly the distance between the 

cities as needed, However, this leads to a significant 

computational overhead.

� It is more reasonable to precompute all intercity 

distances and to store them in a symmetric distance 

matrix with n2 entries, integer dist[n][n].



Ant Colony Optimization: Part 4

Intercity Distances

� For symmetric TSPs we only need to store n(n-1)/2 

distinct distances, 

� It is more efficient to use an n2 matrix to avoid 

performing additional operations to check whether, 

when accessing a generic distance d(i, j), entry (i, j)when accessing a generic distance d(i, j), entry (i, j)

or entry(j, i) of the matrix should be used.



Ant Colony Optimization: Part 4

Intercity Distances

� It is also important to know that, for historical 

reasons, in almost all the TSP literature, the 

distances are stored as integers. 

� In fact, in old computers integer operations used to 

be much faster than operations on real numbers, so be much faster than operations on real numbers, so 

that by setting distances to be integers, much more 

efficient code could be obtained.



Ant Colony Optimization: Part 4

Nearest-Neighbor Lists

� In addition to the distance matrix, it is convenient to 

store for each city a list of its nearest neighbors.

� Let di be the list of the distances from a city i to all 

cities j, with j = 1,…, n and i # j 

� The nearest-neighbor list of a city i is obtained by � The nearest-neighbor list of a city i is obtained by 

sorting the list di according to nondecreasing

distances, obtaining a sorted list d′i , ties can be 

broken randomly. 



Ant Colony Optimization: Part 4

Nearest-Neighbor Lists

� The position r of a city j in city i’s nearest-neighbor 

list nn_list[i] is the index of the distance dij in the 

sorted list d′i

� nn_list[i][r] gives the identifier (index) of the r-th

nearest city to city inearest city to city i

– i.e., nn_list[i][r] = j

� You have to repeat a sorting algorithm over n - 1 

cities for each city



Ant Colony Optimization: Part 4

Nearest-Neighbor Lists

� An enormous speedup is obtained for the solution 

construction in ACO algorithms.

� If the nearest-neighbor list is cut nn after a constant 

number nn of nearest neighbors, where typically nn

is a small value ranging between 15 and 40.is a small value ranging between 15 and 40.

� In this case, an ant located in city i chooses the next 

city among the nn nearest neighbors of i

� In case the ant has already visited all the nearest 

neighbors, then it makes its selection among the 

remaining cities



Ant Colony Optimization: Part 4

Nearest-Neighbor Lists

� It should be noted that the use of truncated nearest-

neighbor lists can make it impossible to find the 

optimal solution.



Ant Colony Optimization: Part 4

Pheromone Trails

� In addition to the instance-related information, we 

also have to store for each connection (i, j) a 

number τij corresponding to the pheromone trail 

associated with that connection. 

� For symmetric TSPs this requires storing n(n-1)/2 � For symmetric TSPs this requires storing n(n-1)/2 

distinct pheromone values, because we assume that 

τij = τji, for all (i, j)

� Again, as was the case for the distance matrix, it is 

more convenient to use some redundancy and to 

store the pheromones in a symmetric n2 matrix.



Ant Colony Optimization: Part 4

Combining Pheromone and Heuristic Information

� When constructing a tour, an ant located on city i

chooses the next city j with a probability which is 

proportional to the value of [τij]
α[ηij]

β. 

� Because these very same values need to be 

computed by each of the m ants, computation times computed by each of the m ants, computation times 

may be significantly reduced by using an additional 

matrix choice_info[n][n]

� Each entry choice_info[i][j] stores the value 

[τij]
α[ηij]

β. 



Ant Colony Optimization: Part 4

Combining Pheromone and Heuristic Information

� Again, in the case of a symmetric TSP instance, 

only n(n-1)/2 values have to be computed, but it is 

convenient to store these values in a redundant way 

as in the case of the pheromone and the distance 

matrices. matrices. 

� Additionally, one may store the [ηij]
β values in a 

further matrix heuristic to avoid recomputing these 

values after each iteration, because the heuristic 

information stays the same throughout the whole 

run of the algorithm 



Ant Colony Optimization: Part 4

Combining Pheromone and Heuristic Information

� Finally, if some distances are zero, which is in fact 

the case for some of the benchmark instances in the 

TSPLIB, then one may set them to a very small 

positive value to avoid division by zero.



Ant Colony Optimization: Part 4

Representing Ants

� An ant is a simple computational agent which

– constructs a solution to the problem at hand, and 

– may deposit an amount of pheromone ∆τ on the arcs it 

has traversed.

� To do so, an ant must be able to � To do so, an ant must be able to 

– (1) store the partial solution it has constructed so far,

– (2) determine the feasible neighborhood at each city, and 

– (3) compute and store the objective function value of the 

solutions it generates.



Ant Colony Optimization: Part 4

Ant’s memory storing (partial) tours

� The first requirement can be satisfied by storing the 

partial tour in a sufficiently large array. 

� For the TSP we represent tours by arrays of length n

+ 1, integer tour[n  + 1], where at position n + 1 the 

first city is repeated. first city is repeated. 

� This choice makes easier some of the other 

procedures like the computation of the tour length.



Ant Colony Optimization: Part 4

Visited Cities

� The knowledge of the partial tour at each step is 

sufficient to allow the ant to determine whether a 

city j is in its feasible neighborhood:

– it is enough to scan the partial tour for the occurrence of 

city j. city j. 

– If city j has not been visited yet, then it is member of the 

feasible neighborhood; otherwise it is not.

� Unfortunately, this simple way of determining the 

feasible neighborhood involves a high 

computational overhead.



Ant Colony Optimization: Part 4

Visited Cities

� The simplest way around this problem is to 

associate with each ant an additional array visited 

whose values are set to visited[j] = 1 if city j has 

already been visited by the ant, and to visited[j] = 0 

otherwise. otherwise. 

� This array is updated by the ant while it builds a 

solution.

� The array visited, part of the data structure 

single_ant, is declared of type integer; however, to 

save memory, it could be declared of type Boolean



Ant Colony Optimization: Part 4

Tour Length

� Finally, the computation of the tour length, stored 

by the ant in the tour_length variable, can be done 

by summing the length of the n arcs in the ant’s 

tour.



Ant Colony Optimization: Part 4

Overall Memory Requirement

� For representing all the necessary data for the 

problem we need:

– four matrices of dimension n x n for representing the 

distance matrix, the pheromone matrix, the heuristic 

information matrix, and the choice_info matrix, and 

– a matrix of size n x nn for the nearest-neighbor lists. 

– two arrays of size (n +1) and n to store the tour and the 

visited cities

– an integer for storing the tour’s length.

– a variable for representing each of the m ants

– the best solution found so far

– statistical information about the algorithm performance



The Algorithm



Ant Colony Optimization: Part 4

The Algorithm

� The main tasks to be considered in an ACO 

algorithm are:

– the solution construction, 

– the management of the pheromone trails, and 

– the additional techniques such as local search. – the additional techniques such as local search. 

� In addition, the data structures and parameters need 

to be initialized and some statistics about the run 

need to be maintained. 

� In this section we give some details on how to 

implement the different procedures of AS in an 

efficient way.



Ant Colony Optimization: Part 4

The Algorithm

� A high-level view of the algorithm:



Ant Colony Optimization: Part 4

Data Initialization

� Data initialization:

– (1) the instance has to be read; 

– (2) the distance matrix has to be computed; 

– (3) the nearest-neighbor lists for all cities have to be 

computed; computed; 

– (4) the pheromone matrix and the choice_info matrix 

have to be initialized; 

– (5) the ants have to be initialized; 

– (6) the algorithm’s parameters must be initialized; and 

– (7) some variables that keep track of statistical 

information, such as the used CPU time, the number of 

iterations, or the best solution found so far, have to be 

initialized. 



Ant Colony Optimization: Part 4

Data Initialization

� A possible organization of these tasks into several data 

initialization procedures is indicated in the figure:



Ant Colony Optimization: Part 4

Termination Condition

� The program stops if at least one termination 

condition applies. Possible termination conditions 

are: 

– (1) the algorithm has found a solution within a predefined 

distance from a lower bound on the optimal solution distance from a lower bound on the optimal solution 

quality; 

– (2) a maximum number of tour constructions or a 

maximum number of algorithm iterations has been 

reached; 

– (3) a maximum CPU time has been spent; or 

– (4) the algorithm shows stagnation behavior.



Ant Colony Optimization: Part 4

Solution Construction

� The solution construction requires the following phases.

1. First, the ants’ memory must be emptied. 

– This is done in lines 1 to 5 of procedure 

ConstructSolutions by marking all cities as unvisited, 

that is, by setting all the entries of the array ants.visited

to false for all the ants.

2. Second, each ant has to be assigned an initial city. 

– One possibility is to assign each ant a random initial 

city. 

– This is accomplished in lines 6 to 11 of the procedure. 

– The function random returns a random number chosen 

according to a uniform distribution over the set {1,…, 

n}.



Ant Colony Optimization: Part 4

Solution Construction

3. Next, each ant constructs a complete tour. 

– At each construction step the ants apply the AS action 

choice rule [equation (3.2)]. 

– The procedure ASDecisionRule implements the action 

choice rule and takes as parameters the ant identifier choice rule and takes as parameters the ant identifier 

and the current construction step index; this is discussed 

later in more detail.

4. Finally, the ants move back to the initial city and 

the tour length of each ant’s tour is computed. 

– This is done in lines 18 to 21.

– for the sake of simplicity, in the tour representation we 

repeat the identifier of the first city at position n + 1; 

this is done in line 19.



Ant Colony Optimization: Part 4

Solution Construction



Ant Colony Optimization: Part 4

Solution Construction



Ant Colony Optimization: Part 4

Solution Construction

� As stated above, the solution construction of all of 

the ants is synchronized in such a way that the ants 

build solutions in parallel.

� The same behavior can be obtained, for all AS 

variants, by ants that construct solutions variants, by ants that construct solutions 

sequentially, because the ants do not change the 

pheromone trails at construction time 

� This is not the case for ACS, in which case the 

sequential and parallel implementations give 

different results.



Ant Colony Optimization: Part 4

Solution Construction

� In the action choice rule an ant located at city i

probabilistically chooses to move to an unvisited 

city j based on the pheromone trails [τij]
α and the 

heuristic information [ηij]
β by see equation:



Ant Colony Optimization: Part 4

ASDecisionRule Procedure

� AS without candidate lists: pseudo-code for the action choice 

rule.



Ant Colony Optimization: Part 4

ASDecisionRule Procedure



Ant Colony Optimization: Part 4

ASDecisionRule Procedure

� The procedure works as follows: 

� 1. First, the current city c of ant k is determined 

(line 1). 

� 2. The probabilistic choice of the next city then 

works analogously to the roulette wheel selectionworks analogously to the roulette wheel selection

procedure of evolutionary computation

– each value choice_info[c][j] of a city j that ant k has not 

visited yet determines a slice on a circular roulette wheel, 

the size of the slice being proportional to the weight of 

the associated choice (lines 2–10).



Ant Colony Optimization: Part 4

Solution Construction

� 3. the wheel is spun and the city to which the 

marker points is chosen as the next city for ant k

(lines 11–17). 

� This is implemented by:

– summing the weight of the various choices in the variable – summing the weight of the various choices in the variable 

sum_probabilities,

– drawing a uniformly distributed random number r from 

the interval [0, sum_probabilities],

– going through the feasible choices until the sum is greater 

or equal to r.



Ant Colony Optimization: Part 4

Solution Construction

� 4. Finally, the ant is moved to the chosen city, 

which is marked as visited (lines 18 and 19).



Ant Colony Optimization: Part 4

Solution Construction

� When exploiting candidate lists, the procedure 

ASDecisionRule needs to be adapted, resulting in 

the procedure NeighborListASDecisionRule

� A first change is that when choosing the next city, 

one needs to identify the appropriate city index one needs to identify the appropriate city index 

from the candidate list of the current city c. 

� This results in changes of the maximum value of 

index j is changed from n to nn in line 3 and the test 

performed in line 4 is applied to the j-th nearest 

neighbor given by nn_list[c][j].



Ant Colony Optimization: Part 4

Solution Construction

� A second change is necessary to deal with the 

situation in which all the cities in the candidate list 

have already been visited by ant k. 

� In this case, the variable sum_probabilities keeps its 

initial value 0.0 and one city out of those not in the initial value 0.0 and one city out of those not in the 

candidate list is chosen.

� The procedure ChooseBestNext is used to identify 

the city with maximum value of [τij]
α[ηij]

β as the 

next to move to.



Ant Colony Optimization: Part 4

Solution Construction

� AS with candidate lists: pseudo-code for the action choice 

rule.



Ant Colony Optimization: Part 4

Solution Construction



Ant Colony Optimization: Part 4

Solution Construction



Ant Colony Optimization: Part 4

Local Search

� Once the solutions are constructed, they may be 

improved by a local search procedure.

� While a simple 2-opt local search can be 

implemented in a few lines, the implementation of 

an efficient variant is somewhat more involved. an efficient variant is somewhat more involved. 

� Since the details of the local search are not 

important for understanding how ACO algorithms 

can be coded efficiently, we refer to the 

accompanying code (available at www.aco-

metaheuristic.org/aco-code/) for more information 

on the local search implementation.



Ant Colony Optimization: Part 4

Pheromone Update

� The last step in an iteration of AS is the pheromone 

update. 

� This is implemented by the procedure 

ASPheromoneUpdate, which comprises two 

pheromone update procedures: pheromone pheromone update procedures: pheromone 

evaporation and pheromone deposit.

� The first one, Evaporate decreases the value of the 

pheromone trails on all the arcs (i, j) by a constant 

factor r. 



Ant Colony Optimization: Part 4

Pheromone Update

� The second one, DepositPheromone, adds 

pheromone to the arcs belonging to the tours 

constructed by the ants. 

� Additionally, the procedure 

ComputeChoiceInformation computes the matrix ComputeChoiceInformation computes the matrix 

choice_info to be used in the next algorithm 

iteration. 

� Note that in both procedures care is taken to 

guarantee that the pheromone trail matrix is kept 

symmetric, because of the symmetric TSP 

instances.



Ant Colony Optimization: Part 4

Pheromone Update

� AS: management of the pheromone updates.



Ant Colony Optimization: Part 4

Pheromone Update

� AS: implementation of the pheromone evaporation 

procedure.



Ant Colony Optimization: Part 4

Pheromone Update

� AS: implementation of the pheromone deposit 

procedure.



Ant Colony Optimization: Part 4

Pheromone Update

� When attacking large TSP instances, profiling the 

code showed that the pheromone evaporation and 

the computation of the choice_info matrix for AS

can require a considerable amount of computation 

time.time.

� But in ACS only the pheromone trails of arcs that 

are crossed by some ant have to be changed and the 

number of ants in each iteration is a low constant.



Ant Colony Optimization: Part 4

Statistical Information

� The last step in the implementation of AS is to store 

statistical data on algorithm behavior such as:

– the best-found solution since the start of the algorithm 

run,

– the iteration number at which the best solution was found – the iteration number at which the best solution was found 

� Details about these procedures are available at 

www.aco-metaheuristic.org/aco-code/.



Changes for Other ACO Algorithms



Ant Colony Optimization: Part 4

Changes for Other ACO Algorithms

� Some of the necessary adaptations are described 

when implementing AS variants, in the following:

� 1. When depositing pheromone, the solution may be 

given some weight, as is the case in EAS and 

ASrank. This can be accomplished by simply adding ASrank. This can be accomplished by simply adding 

a weight factor as an additional argument of the 

procedure DepositPheromone.

� 2. MMAS has to keep track of the pheromone trail 

limits. The best way to do so is to integrate this into 

the procedure ASPheromoneUpdate.



Ant Colony Optimization: Part 4

Changes for Other ACO Algorithms

� 3. Finally, the search control of some of the AS 

variants may need minor changes. Examples are 

occasional pheromone trail reinitializations or the 

schedule for the frequency of the best-so-far update 

in MMAS.in MMAS.



Ant Colony Optimization: Part 4

Changes for Other ACO Algorithms

� Unlike AS variants, the implementation of ACS 

requires more significant changes, as listed in the 

following:

� 1. The implementation of the pseudorandom 

proportional action choice rule requires the proportional action choice rule requires the 

generation of a random number q uniformly 

distributed in the interval [0, 1] and the application 

of the procedure ChooseBestNext if q < q0, or of the 

procedure ASDecisionRule otherwise.



Ant Colony Optimization: Part 4

Changes for Other ACO Algorithms

� 2. The local pheromone update can be managed by 

the procedure ACSLocalPheromoneUpdate (see the 

figure) that is always invoked immediately after an 

ant moves to a new city.

� 3. The implementation of the global pheromone trail � 3. The implementation of the global pheromone trail 

update is similar to the procedure for the local 

pheromone update except that pheromone trails are 

modified only on arcs belonging to the best-so-far 

tour.



Ant Colony Optimization: Part 4

Changes for Other ACO Algorithms

� Implementation of the local pheromone update in 

ACS.



Ant Colony Optimization: Part 4

Changes for Other ACO Algorithms

� 4. The integration of the computation of new values 

for the matrix choice_info into the local and the 

global pheromone trail update procedures.



References



Ant Colony Optimization: Part 4

References

� M. Dorigo and T. Stützle. Ant Colony 

Optimization, MIT Press, Cambridge, 2004.



The End


