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Railroad System Operating Plans

� Railroad system operating plans are developed to 

perform the sequential decision process of: 

– Car block decisions

– Train formation decisions

– Train schedule decisions

– Empty car distribution decisions
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– Empty car distribution decisions



Railroad System Operating Plans

� Car block decisions 

– determine which blocks the cars will be assigned to, or 

which demand each block will carry.

� Train formation decisions 

– determine which train the blocks will be assigned to, or 

which b
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which b

� Train schedule decisions 

– determine when trains will be released from their origin 

station and arrive at their destination station. lock each train 

will carry.

� Empty car distribution decisions 

– determine where the empty cars will be sent.



Aim

� In this study, we present the development of a genetic 

algorithm (GA) as a possible technique for train 

formation problem (TFP).

Martinelli and Teng (1995)



Why Genetic Algorithm?

� Although mathematical programming formulations 

and algorithms are available for solving the train 

formation problem, the computational time required 

for their convergence is usually excessive.

� New approaches such as artificial intelligence are 

necessary and may prove quite fruitful if shorter 
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necessary and may prove quite fruitful if shorter 

implementation times can be achieved without a 

substantial loss in solution integrity. 

� One such artificial intelligence technique is genetic 

algorithms (GA).



Three Formulations for the TFP
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Formulation

� An example railroad network having 6 nodes

(representing yards) and 10 links (representing line

segments)
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Formulation

� Trains:

– Short distance service

� The short distance trains are those whose origin and destination 

yards are adjacent

� Short distance trains are always provided for each link

– Long distance service
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– Long distance service

� long distance trains are those whose origin and destination yards 

are not adjacent. 

� The existence of long distance trains is determined by the train 

formation plan. 



Formulation

� Demands:

– Short distance demands

� Those demands whose origin and destination are connected directly 

by one link. 

� Short distance demands are carried by short distance trains

– Long distance demands 
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– Long distance demands 

� Those demands whose origin and destination are not directly 

connected. 

� Long distance demands are carried by a combination of short and 

long distance trains.



Formulation

� Routes:

– There are a number of different physical routes available 

for a given demand. 

– For example. for demand from Yard 1 to Yard 6, there 

might be four different physical routes possible: (1,2,4,6), 

(l, 2, 5. 6), (1, 3, 4, 6), and (1, 3, 5, 6). 
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(l, 2, 5. 6), (1, 3, 4, 6), and (1, 3, 5, 6). 



Formulation

� Itineraries:

– On a certain route, there are always a high number of 

possible itineraries (or assignments). 

– These itineraries are distinguished from each other by the 

number and types of trains.
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Formulation

� For example, along physical route (1,2,4,6), there might be four 

itineraries possible.

� Referring to Itinerary i2, the demand for Yard 1 to 6 will be 

relayed from Yard 1 to Yard 2, and then to Yard 6. 
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Formulation

� The label of long 

distance trains and the 

route they follow are:
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Formulation

� The short distance trains are denoted such as T12, 

where 1 and 2 are the train's origin and destination, 

respectively.

� Whereas the long distance trains are in the form of 

T216, where 1 (second number) and 6 are the train's 

origin and destination, respectively, 2 is the sequence 
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origin and destination, respectively, 2 is the sequence 

of the possible roads the train can follow between 1 

and 6. 



Formulation

� The demand matrix:
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Formulation

� It is a common practice for the sake of convenience 

that, when managing the traffic flow on the railroad 

network, each demand is usually confined to only 

one itinerary.

� If for each demand, a set of 0-1 variables are defined 

for the choice of itinerary, the TFP could be 
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for the choice of itinerary, the TFP could be 

formulated as a 0-1 integer program.

� If the objective is minimizing the delay times 

including the travel times of the cars incurred in the 

railroad system, then the TFP can be formulated as 

follows.



Formulation

 

i the index of Demands 

j the index of Trains 

l the index of Links 

  

ri the amount of traffic of Demand i 

tl the average travel time on Link l 
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tl the average travel time on Link l 

vj Train j's operating time at its destination yard 

L the total number of links 

M the total number of demands 

N the total number of trains possible provided 

  

 



Formulation

 

Ri the set of itineraries by which Demand i was supposed to be carried 

Sj the set of itineraries which include Train j as one part of their line 

haul 

Pl the set of trains which pass through Link l 

  

X  the volume of cars in Train j 
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Xj the volume of cars in Train j 

Yl the volume on Link l 

  

xi,k a binary integer variable representing the demand-itinerary choice, 

it will be 1 if demand i is carried by itinerary k, otherwise zero. 
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First Case

� In the objective function, 

– the first summation is for the travel times incurred on line 

segments, and

– the second summation is for the times incurred at yards. 

� The second Equation is the demand-route restrictions. 

The demand flow conservation and balance constraints 
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� The demand flow conservation and balance constraints 

usually appear in transportation network models, but 

are automatically satisfied by this formulation. 

� This is the first case we will investigate in this study. 



Second Case

� In first case formulation, it is assumed that the times in 

which the traffic is incurred at yards and on line 

segments are independent of the traffic volume. 

� However, in reality, the times are always dependent on 

the volume. 

The relationship between times and the traffic volume 
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� The relationship between times and the traffic volume 

is nonlinear. 

� Modifying the objective function accordingly, we 

have: 



Second Case
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Third Case

� Furthermore, in practice, it is likely to impose 

constraints on some variables such as link flow and 

train load. 

� These constraints can be formulated as:

Yl ≤ b1    for      l=1,2, …, L
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l 1

Xj ≥ b2 for       j=1,2, …, N

� The first indicates that the traffic volumes on links 

should be less than bl. The second indicates that the 

trains can be provided only when the loads on them 

are larger than b2



Third Case
 

MIN jj

N

j

j

L

l

lll XXvYYt )()(
11

∑∑
==

+
 

Subject to:  

 1, =∑
∈ iRk

kix
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 Yl ≤ b1    for       l=1,2, …, L 

 Xj ≥ b2    for       j=1,2, …, N 

where: 
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Data

� In this study, L = 10 (links), M = 30 (demands) and N 

= 44 (trains). 

� All the tl have values of 10 hr/car .

� All the vj take values around 13-15 hr/car.
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Data

� There are 10 long distance demands. 

� For demand from 1 to 6 and from 6 to 1, each is 

assumed to have 16 possible itineraries. 

� For the remaining 8 long distance demands, each is 

assumed to have 4 possible itineraries. 
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� All of the formulations in these three cases are binary 

integer programs. 



Data

� For Case 1, some exact algorithms have been proved 

to be effective conventionally. 

� The common point of these algorithms might-be the 

use of the linear characteristics of the objective 

function. 

In each operation of "branch," for example, relaxed 
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� In each operation of "branch," for example, relaxed 

linear programming can be efficiently solved. 

� However, in Cases 2 and 3, the objective functions are 

not linear. 



GA Formulations to the TFP
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GA Formulations to the TFP

� Train formation decisions are represented by 0-1 

strings
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� In this figure xi,k the decision variable where each 

route for each demand has two itineraries. 



GA Formulations to the TFP

� The evaluation functions derived for the three cases 

are the following: 
 

BM - 







+∑∑

==

j

N

j

j

L

l

ll XvYt
11

 

BM -  





+∑∑
NL

XXvYYt )()(

Martinelli and Teng (1995)

� Where BM  is used to convert the minimizing objective 

functions to maximizing. The variables f and g are penalty 

functions. 
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GA Formulations to the TFP

� The GA operations are designed as follows: 

1) The initial set of solutions are generated randomly 

and 

2) The operations of reproduction and mutation are done 

with regard to the constraints represented in Equation 

2, the mate sites in the crossover operation are selected 
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2, the mate sites in the crossover operation are selected 

uniformly at random from a specific set of positions. 

instead of from a set of consecutive numbers like that 

in the general GA. In this way, the constraint in 

Equation 2 can be guaranteed automatically in the 

genetic algorithm operation. 



Calibration of the GA Model
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Calibration of the GA Model

� The calibration process for the GA model is to find 

the appropriate parameters by which the best 

solutions of the GA model can be obtained.

� These parameters include:

– the size of the population
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– the number of generations

– the crossover probability

– the mutation probability 

� In order to quicken the calibration, it is decomposed 

into two steps.



Calibration of the GA Model

� First Step:

– The first step considers only the size of the population and 

the number of generations.

– When generating the schemes, only these two parameters 

vary within certain ranges, whereas the crossover 

probability and the mutation probability are fixed at 0.9 and 
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probability and the mutation probability are fixed at 0.9 and 

0.03. respectively. 

– From this step, the optimal number of generations and 

population size are determined. 



Calibration of the GA Model

� Second Step:

– Given the population and the number of generations values, 

the second step generates schemes by varying the 

crossover and mutation probability in a certain range. 

– From this step, the optimal values for these parameters are 

obtained. 
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obtained. 

� The calibration process is conducted for all three 

cases. 



First Step

� In the first step, the generations are set at 100, 200, …,  

1000, respectively. 

� The population sizes are set at 10, 20, ... , 100. 

respectively. 

� Then, for each case, 100 schemes will need to be 

generated and evaluated. 
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generated and evaluated. 

� After a rough scanning of all the results. it is 

determined that the generation of 1000 is the most 

appropriate to evaluate the performance of the GA 

model. 



Figure 4 Determination of population size for Case 1

� A sample plot to investigate the influence of the population 

size on the search process case 1:
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First Step

� The population sizes are determined by two criteria: 

– the time the GA model uses to decrease the objective 

function values to the best solution and 

– the stability after the best solutions have been achieved. 

� The optimal population size is found to be:

– 10 for Case 1
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– 10 for Case 1

– 100 for Case 2

– 70 for Case 3



Second Step

� Following the procedures for Step 2, the crossover 

probabilities are set at 0.6, 0.7, 0.8, 0.9, and 1.0 

respectively. 

� The mutation probabilities are set at 0.01, 0.02, 0.03, 

0.04, and 0.05, respectively. 
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Second Step

� For ease of analysis, the solution searching processes 

are classified into four patterns. 

� Pattern 1

– the searching processes are stable after the smallest values 

are found. 

– The generation at which the smallest values are found is 
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– The generation at which the smallest values are found is 

called the stable generation. 

– This pattern is viewed to have the best performance. 



Second Step

� Pattern 2 and Pattern 3

– are similar in the solution search processes. Both patterns 

indicate that the search processes will fluctuate after the 

smallest objective function value is achieved. 

– However, in Pattern 2, the search process stays at the 

convergence status for a longer time than that in Pattern 3. 
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convergence status for a longer time than that in Pattern 3. 



Figure 6 Search process: Pattern 2
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Figure 6 Search process: Pattern 3
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Second Step

� Pattern 4: 

– the extent of fluctuation in Pattern 2 and 3 is smaller than 

that in Pattern 4. 

� Among these four patterns. 

– Pattern 1 shows a strong ability to keep the smallest values 

they achieved. 
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they achieved. 

– Pattern 4 is the worst condition.



Figure 7 Search process: Pattern 4
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Table 6: Calibration for Crossover and Mutation Probability
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Second Step

� The number outside parentheses represents the stable 

generation in Pattern 1, and the numbers in 

parentheses represent the designation of patterns. 

� The crossover and mutation probabilities are 

determined by the corresponding row and column 

values of the cell which have the smallest stable 
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values of the cell which have the smallest stable 

generation. 



Second Step

� The crossover and mutation probabilities are:

– For Case 1, corresponding the stable generation of 2, they 

are determined to be 0.7 and 0.01, respectively. 

– For Case 2, corresponding the stable generation of 10, they 

are determined to be 0.7 and 0.01, respectively. 

– For Case 3, corresponding to the stable generation of 32, 
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– For Case 3, corresponding to the stable generation of 32, 

they are determined to be 0.8 and 0.02, respectively. 



Second Step

� Referring to result Table, it can be seen that the linear 

case (Case 1) involves fewer generations to obtain the 

optimal solution than the nonlinear cases (Case 2 and 

Case 3). 

– In Case 1, the GA model always obtains the optimal 

solutions. 
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solutions. 

– In Case 2, there are 11 schemes which cannot yield the 

optimal solution.

– In Case 3, there are 15 schemes which cannot yield the 

optimal solution.



Second Step

� Furthermore. from the Table, it can be seen that 

additional constraints in Case 3 make the solution 

searching process longer. 

� In Case 2, there are 14 stable schemes. and the average 

stable generation is 123, whereas in Case 3, there are 

10 such schemes with an average of 217. 
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10 such schemes with an average of 217. 



Validation of the GA Model 
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Validation of the GA Model

� The task of the validation process of the genetic 

algorithm model is to test whether the obtained 

solutions are optimal. 

� In this study different validation methods are 

employed for different cases. 

For Case 1, 
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� For Case 1, 

– because the optimal solutions can be obtained from 

available software developed by conventional algorithms, 

the solutions from the GA model are compared with them. 



Validation of the GA Model

� For Cases 2 and 3,

– The optimality of the solutions from the GA model are 

evaluated by observing whether the solutions have obeyed 

the constraints imposed by the nonlinear delay time 

functions and imposed by some practical considerations. 

– After the feasibility of the solutions is determined, a variety 
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– After the feasibility of the solutions is determined, a variety 

of combinations around the obtained solutions are tested to 

see whether smaller objective values can be achieved. 



Validation of Case 1

� In Case 1, the optimal solution is obtained by using 

Quant Systems (Version 2.1). 

� This solution is compared with that obtained from the 

GA model. 

� The solutions are the same except that GA models can 

also produce other optimal solutions when multiple 
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also produce other optimal solutions when multiple 

solutions exist. 

� In each case, all the solutions are optimal. whereas the 

itinerary choices are different. The train loads and link 

volumes from one of the optimal solutions are listed in 

Tables 7 and 8. 



Table 7 Train Loads of the Three Cases for Validation
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Table 8 Link Volumes of the Three Cases for Validation
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Validation of Case 2

� In Case 2, the link volumes should be as small as 

possible, because it is assumed that the times in which 

the traffic is incurred on line segments are dependent 

of the traffic volume. 

� From the point of view of networks, however, the link 

volumes should not fluctuate dramatically. 
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volumes should not fluctuate dramatically. 

� Observe Table 8, comparing with the solution of Case 

1, the link volumes in Case 2 are indeed evenly 

distributed. 

� The largest value in Case 1, 508, disappeared in Case 

2. 



Validation of Case 2

� From this observation, it is apparent that the nonlinear 

functions are effective. 

� Following this analysis, the solutions are analyzed by 

providing all possible and comparable schemes. 

� It is concluded that the solutions are truly optimal in 

terms of minimizing the total delay in the rail· road 

Martinelli and Teng (1995)

terms of minimizing the total delay in the rail· road 

system. 



Validation of Case 3

� In Case 3. beside the nonlinear objective function, the 

remaining two constraints are added, that is, 

– the volume on each link should be no more than 300 cars 

(which is realized by setting b1 equals 300)

– the load on each long distance train should be more than 

200 cars (which is realized by setting b2 equals 200)
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200 cars (which is realized by setting b2 equals 200)

� These two constraints establish that the possible load 

on each of the long distance trains are not sufficiently 

large to justify the provision. 



Validation of Case 3

� In Table 7, the loads are really zero, whereas in Table 

8, it appears that the link volume constraints are not 

effective. 

� However, after careful calculation, the overall demand 

through those links where the volumes exceed 300, it 

is found that there is no way to distribute these 
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is found that there is no way to distribute these 

volumes without avoiding the penalty of the violation 

of the constraints. 

� Thus, the solution is truly the optimal.



GA Model Computational Performance
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GA Model Computational Performance

� In Case 1

– the Quant Systems consumes 1.17 sec of CPU to produce 

the optimal solution. However, the GA model uses less 

time. 

� In Cases 2 and 3

– for the number of generations equal to 1000, the GA model 
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– for the number of generations equal to 1000, the GA model 

requires approximately 10 min of CPU. 

– Because both cases can obtain the optimal solutions in less 

than 40 generations, the computation time should be about 

20 sec. Comparing with the size of the problem, this 

computation time is quite satisfactory. 



GA Model Computational Performance

� Using the calibrated parameters, the GA model is used 

for varieties of demand patterns. 

� In Table 2, the long distance demands are varied in the 

range of 100 to 150 cars; there are almost no 

computation time variations. 

For all the demand patterns, the GA model produces 
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� For all the demand patterns, the GA model produces 

the optimal solutions within 40 generations. 



Conclusions
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Conclusions

� Several conclusions can be derived from this study. 

� First

– A GA model is able to produce optimal solutions for the 

formulations which might be difficult conventionally. 

– Also, the computation time is satisfactory. 

Second

Martinelli and Teng (1995)

� Second

– A GA model is not as sensitive to the input patterns. 



Conclusions

� Third, 

– the implementation process for a GA model is straight 

forward. 

– In all three cases, the implementation simply involves the 

adjustment of the objective function formulations. 

– There is no need to give the structure of the formulation a 
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– There is no need to give the structure of the formulation a 

special consideration. 

– The calibration and validation process are also straight 

forward. 



Conclusions

� Fourth

– The binary representation for the binary integer program 

(BIP) is especially effective. 

� Based on the principle introduced in this study, GA 

models can likely be effective when applied to large 

railroad networks. 
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railroad networks. 



Future Research

� The patterns recognition of the solution searching 

process needs to be analyzed quantitatively instead of 

qualitatively. 

� To this end, some statistical model might need to be 

developed. 
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The end
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