Ant Colony Optimization

Part 1: Introduction

Fall 2009
Instructor: Dr. Masoud Yaghini

Ant Colony Optimization: Part 1

Outline

- Introduction
- Real Ants
- Artificial Ants
- References

Introduction

Ant Colony Optimization: Part 1

Swarm Intelligence

- Swarm intelligence (SI) is artificial intelligence based on the collective behavior of decentralized, self-organized systems.
- The expression was introduced by Gerardo Beni and Jing Wang in 1989.
- The natural examples of SI includes the behaviors of certain ants, honeybees, wasps, beetles, caterpillars, and termites

Swarm Intelligence

- Example of swarm intelligence algorithms:
- Ant colony optimization
- Particle swarm optimization
- Stochastic diffusion search
- Swarm robotics

Ant Colony Optimization

- Ant Colony Optimization (ACO) is inspired by the foraging behavior of ant colonies
- ACO algorithms are used for solving discrete optimization problems.
- ACO is one of the most successful examples of metaheuristic algorithms.

Ant Colony Optimization: Part 1

Ant Colony Optimization

- Examples of ACO algorithms
- Ant System (AS)
- Elitist Ant System (EAS)
- Rank-Based Ant System (ASrank)
- Min-Max Ant System (MMAS)
- Ant Colony System (ACS)
- Approximate Nondeterministic Tree Search (ANTS)
- Hyper-Cube Framework

Ant Colony Optimization: Part 1

ACO Brief History

- 1989 \& 1990:
- By Goss et al. \& Deneuborg et al.
- Experiments with Argentine ants
- The ants prefer the shortest path from the nest to the food source
- 1991:
- By Dorigo et. al.
- Ant System (AS) was the first ACO algorithm presented for shortest paths
- 1998:
- Ant Colony Optimization is the name given by Dorigo (Milan, Italy),
- A class of algorithms whose first member was AS.

Ant Colony Optimization: Part 1

ACO Applications

Problem type	Problem name	Main references
Routing	Traveling salesman	Dorigo, Maniezzo, \& Colorni (1991a, b, 1996)
	Dorigo (1992)	
Gambardella \& Dorigo (1995)		
	Dorigo \& Gambardella (1997a, b)	
	Stützle \& Hoos (1997, 2000)	
	Bullnheimer, Hartl, \& Strauss (1999c)	
	Cordón, de Viana, Herrera, \& Morena (2000)	
	Vehicle routing	Bullnheimer, Hartl, \& Strauss (1999a,b)
	Gambardella, Taillard, \& Agazzi (1999)	
	Reimann, Stummer, \& Doerner (2002)	
	Gambardella \& Dorigo (1997, 2000)	

ACO Applications		
Problem type	Problem name	Main references
Assignment	Quadratic assignment	Maniezzo, Colorni, \& Dorigo (1994) Stützle (1997b) Maniezzo \& Colorni (1999) Maniezzo (1999) Stützle \& Hoos (2000)
	Graph coloring	Costa \& Hertz (1997)
	Generalized assignment	Lourenço \& Serra (1998, 2002)
	Frequency assignment	Maniezzo \& Carbonaro (2000)
	University course timetabling	Socha, Knowles, \& Sampels (2002) Socha, Sampels, \& Manfrin (2003)

Ant Colony Optimization: Part 1

ACO Applications

Problem type	Problem name	Main references
Scheduling	Job shop	Colorni, Dorigo, Maniezzo, \& Trubian (1994)
	Open shop	Pfahringer (1996)
	Flow shop	Stützle (1998a)
	Total tardiness	Bauer, Bullnheimer, Hartl, \& Strauss (2000)
	Total weighted tardiness	den Besten, Stützle, \& Dorigo (2000)
	Merkle \& Middendorf (2000, 2003a)	
	Gagné, Price, \& Gravel (2002)	
	Project scheduling	Merkle, Middendorf, \& Schmeck (2000a, 2002)
	Group shop	Blum (2002a, 2003a)

Ant Colony Optimization: Part 1

ACO Applications

Problem type	Problem name	Main references
Subset	Multiple knapsack	Leguizamón \& Michalewicz (1999)
	Max independent set Redundancy allocation	Leguizamón \& Michalewicz (2000)
	Set covering	Liang \& Smith (1999)
	Leguizamón \& Michalewicz (2000) Weight constrained graph tree partition	Hadji, Rahoual, Talbi, \& Bachelet (2000) Arc-weighted l-cardinality
tree Maffioli (2001)		
Maximum clique	Blum \& Blesa (2003)	

Ant Colony Optimization: Part 1

ACO Applications

Problem type	Problem name	Main references
Machine learning	Classification rules	Parpinelli, Lopes, \& Freitas (2002b)
	Bayesian networks	de Campos, Gámez, \& Puerta (2002b)
	Fuzzy systems	Casillas, Cordón, \& Herrera (2000)
Network routing	Connection-oriented	
	network routing	Rothkrantz (1996)
		Schoonderwoerd, Holland, \& Bruten (1997)
		White, Pagurek, \& Oppacher (1998)
		Di Caro \& Dorigo (1998d)
		Theraulaz (1998)
	Connectionless network	Di Caro \& Dorigo (1997, 1998c,f)
	Subramanian, Druschel, \& Chen (1997)	
	routing	Heusse, Snyers, Guérin, \& Kuntz (1998)
		van der Put (1998)
	Optical network routing	Navarro Varela, \& Sinclair (1999)

Real Ants

Ant Colony Optimization: Part 1

Stigmergy

- Ant colonies, in spite of the simplicity of their individuals, present a highly structured social organization.
- As a result of this organization, ant colonies can accomplish complex.
- Ants coordinate their activities via stigmergy

Ant Colony Optimization: Part 1

Stigmergy

- Stigmergy is a form of indirect communication mediated by modifications of the environment.
- an individual modifies the environment
- other individuals respond to that change at a later time
- The environment mediates the communication among individuals
- A foraging ant deposits a chemical on the ground which increases the probability that other ants will follow the same path.

Pheromones

- The communication among individuals, or between individuals and the environment, is based on the use of chemicals produced by the ants.
- These chemicals are called pheromones.
- Trail pheromone is a specific type of pheromone that some ants use for marking paths on the ground, for example, paths from food sources to the nest.

Ant Colony Optimization: Part 1

Double Bridge Experiments

- Deneubourg and colleagues have shown that foraging ants can find the shortest path between their nest and a food source
- They used a double bridge connecting a nest of ants and a food source.
- They ran experiments varying the length of the two branches of the double bridge.

Ant Colony Optimization: Part 1

Double Bridge Experiments

Ant Colony Optimization: Part 1

First Experiment

Ant Colony Optimization: Part 1

Second Experiment

Ant Colony Optimization: Part 1

Foraging behavior of Ants

- 2 ants start with equal probability of going on either path.

Ant Colony Optimization: Part 1

Foraging behavior of Ants

- The ant on shorter path has a shorter to-and-fro time from it's nest to the food.

Ant Colony Optimization: Part 1

Foraging behavior of Ants

- The density of pheromone on the shorter path is higher because of 2 passes by the ant (as compared to 1 by the other).

Ant Colony Optimization: Part 1

Foraging behavior of Ants

- The next ant takes the shorter route.

Ant Colony Optimization: Part 1

Foraging behavior of Ants

- Over many iterations, more ants begin using the path with higher pheromone, thereby further reinforcing it.

Ant Colony Optimization: Part 1

Foraging behavior of Ants

- After some time, the shorter path is almost exclusively used.

Ant Colony Optimization: Part 1 Foraging behavior of Ants

Inspiring Source of ACO

- This collective trail-laying and trail-following behavior whereby an ant is influenced by a chemical trail left by other ants is the inspiring source of ACO.

Artificial Ants

Ant Colony Optimization: Part 1

Artificial Ants

- The double bridge experiments show clearly that ant colonies have a built-in optimization capability
- By the use of probabilistic rules based on local information they can find the shortest path between two points in their environment.
- It is possible to design artificial ants that, by moving on a graph modeling the double bridge, find the shortest path between the two nodes corresponding to the nest and to the food source.

Ant Colony Optimization: Part 1

Artificial Ants

- As a first step toward the definition of artificial ants, consider this graph

- The graph consists of two nodes (1 and 2, representing the nest and the food respectively)

Ant Colony Optimization: Part 1

Artificial Ants

- The nodes are connected by a short and a long arc
- In the example the long arc is r times longer than the short arc, where r is an integer number.
- We assume the time to be discrete ($\mathrm{t}=1,2, \ldots$) and that at each time step each ant moves toward a neighbor node at constant speed of one unit of length per time unit.

Ant Colony Optimization: Part 1

Artificial Ants

- Ants add one unit of pheromone to the arcs they use.
- Ants move on the graph by choosing the path probabilistically:
- $P_{i s}(t)$ is the probability for an ant located in node i at time t to choose the short path, and
- $P_{i j}(t)$ the probability to choose the long path.
- These probabilities are a function of the pheromone trails $\varphi_{i a}$ that ants in node i

Ant Colony Optimization: Part 1

Artificial Ants

- The probabilities

$$
\begin{aligned}
& p_{i s}(t)=\frac{\left[\varphi_{i s}(t)\right]^{\alpha}}{\left[\varphi_{i s}(t)\right]^{\alpha}+\left[\varphi_{i l}(t)\right]^{\alpha}} \\
& p_{i l}(t)=\frac{\left[\varphi_{i l}(t)\right]^{\alpha}}{\left[\varphi_{i s}(t)\right]^{\alpha}+\left[\varphi_{i l}(t)\right]^{\alpha}}
\end{aligned}
$$

Ant Colony Optimization: Part 1

Artificial Ants

- Trail update on the two branches is performed as follows:

$$
\begin{array}{r}
\varphi_{i s}(t)=\varphi_{i s}(t-1)+p_{i s}(t-1) m_{i}(t-1)+p_{j s}(t-1) m_{j}(t-1), \\
(i=1, j=2 ; i=2, j=1), \\
\varphi_{i l}(t)=\varphi_{i l}(t-1)+p_{i l}(t-1) m_{i}(t-1)+p_{j l}(t-r) m_{j}(t-r), \\
(i=1, j=2 ; i=2, j=1),
\end{array}
$$

- Where $m_{i}(t)$ the number of ants on node i at time t, is given by

$$
\begin{array}{r}
m_{i}(t)=p_{j s}(t-1) m_{j}(t-1)+p_{j l}(t-r) m_{j}(t-r) \\
(i=1, j=2 ; i=2, j=1)
\end{array}
$$

Ant Colony Optimization: Part 1

Artificial Ants

- Another way of modeling:

- In this model each arc of the graph has the same length, and a longer branch is represented by a sequence of arcs.
- In the figure, for example, the long branch is twice as long as the short branch.

Ant Colony Optimization: Part 1

Artificial Ants

- Pheromone updates are done with one time unit delay on each arc.
- The two models are equivalent from a computational point of view, yet the second model permits an easier algorithmic implementation when considering graphs with many nodes.
- By setting the number of ants to 20 , the branch length ratio to $r=2$, and the parameter a to 2, and $\mathrm{t}=100$, the system converges rapidly toward the use of the short branch.

Ant Colony Optimization: Part 1

Artificial Ants

Ant Colony Optimization: Part 1

Artificial Ants

- Let us consider a static, connected graph $G=(N, A)$, where N is the set of nodes and A is the set of undirected arcs connecting them.

Ant Colony Optimization: Part 1

Artificial Ants

- Artificial ants whose behavior is a straightforward extension of the behavior of the real ants, while building a solution, may generate loops.
- As a consequence of the forward pheromone trail updating mechanism, loops tend to become more and more attractive and ants can get trapped in them.

Ant Colony Optimization: Part 1

Artificial Ants

- Artificial ants are given a limited form of memory in which they can store:
- The paths they have followed so far, and
- The cost of the links they have traversed.
- Via the use of memory, the ants can implement a number of useful behaviors

Ant Colony Optimization: Part 1

Artificial Ants

- The artificial ants have these behaviors:

1. Probabilistic solution construction biased by pheromone trails, without forward pheromone updating
2. Deterministic backward path with loop elimination and with pheromone updating
3. Evaluation of the quality of the solutions generated and use of the solution quality in determining the quantity of pheromone to deposit

References

Ant Colony Optimization: Part 1

References

- M. Dorigo and T. Stützle. Ant Colony Optimization, MIT Press, Cambridge, 2004.

The End

