Ant Colony Optimization

Part 2: Simple Ant Colony Optimization

Fall 2009
Instructor: Dr. Masoud Yaghini

Ant Colony Optimization: Part 2

Outline

- Simple Ant Colony Optimization (S-ACO)
- Experiments with S-ACO
- References

Simple Ant Colony Optimization (S-ACO)

Ant Colony Optimization: Part 2

S-ACO

- The simple ACO algorithm (S-ACO) can be used to find a solution to the shortest path problem defined on the graph.

Ant Colony Optimization: Part 2

S-ACO

- A complete cycle of S-ACO:
- Forward ants and solution construction
- Backward ants and loop elimination
- Pheromone updates
- Pheromone evaporation

Ant Colony Optimization: Part 2

Forward ants and solution construction

- There are two working modes for the ants:
- forwards
- backwards
- Each ant builds, starting from the source node, a solution to the problem by applying a step-by-step decision policy.
- The ants memory allows them to retrace the path it has followed while searching for the destination node
- Pheromones are only deposited in backward mode.

Ant Colony Optimization: Part 2

Forward ants and solution construction

- Assume a connected graph $G=(N, A)$.
- Associated with each edge (i, j) of the graph there is a variable $\tau_{i j}$ termed artificial pheromone trail.
- Every artificial ant is capable of "marking" an edge with pheromone and "smelling" (reading) the pheromone on the trail.
- At the beginning of the search process, a constant amount of pheromone (e.g., $\tau_{i j}=1$) is assigned to all the arcs.

Ant Colony Optimization: Part 2

Forward ants and solution construction

- An ant k located at node i uses the pheromone trail $\tau_{i j}(t)$ to compute the probability of choosing j as next node:

$$
p_{i j}^{k}= \begin{cases}\frac{\tau_{i j}^{\alpha}}{\sum_{j \in N_{i}^{k}} \tau_{i j}^{\alpha}}, & \text { if } j \in N_{i}^{k} \\ 0, & \text { if } j \notin N_{i}^{k}\end{cases}
$$

- Where
$-N_{i}^{k}$ is the neighborhood of ant k in node i.
$-\alpha$ is a parameter that controls the relative weight of pheromone trail

Ant Colony Optimization: Part 2

The neighborhood of ant k in node i

- The neighborhood of a node i contains all the nodes directly connected to node i in the graph $G=(N, A)$, except for the predecessor of node i (i.e., the last node the ant visited before moving to i).
- In this way the ants avoid returning to the same node they visited immediately before node i.
- Only in case N_{i}^{k} is empty, which corresponds to a dead end in the graph, node i 's predecessor is included into N_{i}^{k}.

Forward ants and solution construction

- Ants use differences paths.
- Therefore the time step at which ants reach the destination node may differ from ant to ant.
- Ants traveling on shorter paths will reach their destinations faster.

Ant Colony Optimization: Part 2

Backward ants and loop elimination

- When reaching the destination node,
- the ant switches from the forward mode to the backward mode
- Before moving backward on their memorized path, they eliminate any loops from it has built while searching for its destination node.
- While moving backwards, the ants leave pheromones on the arcs they traversed.

Ant Colony Optimization: Part 2

Loop elimination

- Loop elimination can be done by iteratively scanning the node identifiers position by position starting from the source node
- For the node at the i-th position, the path is scanned starting from the destination node until the first occurrence of the node is encountered
- If we have $j>i$, the subpath from position $i+1$ to position jcorresponds to a loop and can be eliminated.

Ant Colony Optimization: Part 2

The scanning process for loop elimination

Final loop free path

Pheromone Update

- During its return travel to the source, the k-th ant deposits an amount $\Delta \tau^{\star}$ of pheromone on arcs it has visited.

$$
\tau_{i j} \leftarrow \tau_{i j}+\Delta \tau^{\kappa}
$$

- By using this rule, the probability increases that forthcoming ants will use this arc.
- An important aspect is the choice of $\Delta \tau^{k}$.

Ant Colony Optimization: Part 2

Pheromone Update

Type of pheromone update:

- The same constant value:
- The same constant value for all the ants.
- Ants which have detected a shorter path can deposit pheromone earlier than ants traveling on a longer path.
- Function of the solution quality:
- The ants evaluate the cost of the paths they have traversed.
- The shorter paths will receive a greater deposit of pheromones.

Ant Colony Optimization: Part 2

Pheromone evaporation

- Evaporation
- To avoid premature convergence pheromone evaporation is done
- Convergence
- when the probability of selecting the arcs of particular path becomes close to 1
- An evaporation rule will be tied with the pheromones, which will reduce the chance for poor quality solutions.

Ant Colony Optimization: Part 2

Pheromone evaporation

- After each ant k has moved to the next node, the pheromones evaporate by the following equation to all the arcs:

$$
\tau_{i j} \leftarrow(1-p) \tau_{i j}, \quad \forall(i, j) \in A
$$

- where $p \in(0,1]$ is a parameter.

Ant Colony Optimization: Part 2

S-ACO importance aspects

- S-ACO importance aspects:
- Number of ants
- The value of α
- Pheromone evaporation rate (p)
- Type of pheromone update

Experiments with S-ACO

Ant Colony Optimization: Part 2

First Experiments with S-ACO

- The experiments were run using the double bridge
- In this model, each arc of the graph has the same length, and a longer branch is represented by a sequence of arcs.

Ant Colony Optimization: Part 2

First Experiments

1. First case:

- Different values for the number m of ants
- Ants depositing a constant amount of pheromone on the visited $\operatorname{arcs}\left(\Delta \tau^{k}=\right.$ constant $)$

2. Second case:

- Different values for the number m of ants
- Ants depositing an amount of pheromone is $\Delta \tau^{k}$ $=1 / L^{k}$, where L^{k} is the length of ant k's path

First Experiments

- For each experiment we ran 100 trials and each trial was stopped after each ant had moved 1000 steps (moving from one node to the next).
- Evaporation was set to $p=0$
- The parameter α was set to 2
- At the end of the trial we checked whether the pheromone trail was higher on the short or on the long path.

Ant Colony Optimization: Part 2

Results of First Experiments

- Percentage of trials in which S-ACO converged to the long path

m	1	2	4	8	16	32	64	128	256	512
without path length	50	42	26	29	24	18	3	2	1	0
with path length	18	14	8	0	0	0	0	0	0	0

- The results obtained in experiment 2 with pheromone updates based on solution quality are much better.

Ant Colony Optimization: Part 2

Influence of the parameter α

- In additional experiments, we examined the influence of the parameter α on the convergence behavior of S-ACO
- Investigating the cases where a was changed in step sizes of 0.25 from 1 to 2.
- In the first case we found that increasing $\boldsymbol{\alpha}$ had a negative effect on the convergence behavior
- In the second case the results were rather independent of the particular value of α.

Ant Colony Optimization: Part 2

First Experiments

- The results with S-ACO indicate that differential path length alone can be enough to let S-ACO converge to the optimal solution on small graphs
- at the price of having to use large colony sizes, which results in long simulation times.

Ant Colony Optimization: Part 2

Second Experiments with S-ACO

- In a second set of experiments, we studied the influence that pheromone trail evaporation.
- Experiments were run using the extended double bridge graph

Second Experiments

- The ants deposit an amount of pheromone that is the inverse of their path length (i.e., $\Delta \tau^{k}$ $=1 / L^{\prime}$)
- Before depositing pheromone, ants eliminate loops

Ant Colony Optimization: Part 2

Second Experiments

- We ran experiments with S-ACO and different settings for the evaporation rate:

$$
\rho \in\{0,0.01,0.1\}
$$

- $\quad \alpha=1$ and $m=128$ in all experiments.

Plot of Second Experiments

- To evaluate the behavior of the algorithm we observe the development of the path lengths found by the ants.
- We plot the moving averages of the path lengths after loop elimination (moving averages are calculated using the 4 most recent paths found by the ants).
- In the graph of figure a point is plotted each time an ant has completed a journey from the source to the destination and back

Ant Colony Optimization: Part 2

Number of shortest paths found

Pheromone Evaporation

- If $p=0$, no pheromone evaporation takes place.
- An evaporation rate of $p=0.1$ is rather large,
- Because evaporation takes place at each iteration of the S-ACO algorithm
- After ten iterations, which corresponds to the smallest number of steps that an ant needs to build the shortest path and to come back to the source, roughly 65% of the pheromone on each arc evaporates,
- While with $p=0.01$ this evaporation is reduced to around 10%.

Results: No evaporation

- If no evaporation is used, the algorithm does not converge
- It can be seen by the fact that the moving average has approximately the value 7.5 , which does not correspond to the length of any path
- With these parameter settings, this result typically does not change if the run lasts a much higher number of iterations.

Ant Colony Optimization: Part 2

Results: With Evaporation

- With pheromone evaporation, the behavior of S-ACO is significantly different.
- After a short transitory phase, S-ACO converges to a single path
- For $p=0.01$ the value of shortest path is 5
- For $p=0.1$ the path of length is 6

Results: Pheromone Updates

- Without pheromone updates based on solution quality, S-ACO performance is much worse.
- The algorithm converges very often to the suboptimal solution of length 8
- The larger the parameters α or p, the faster SACO converges to this suboptimal solution.

Results: Pheromone Evaporation Rate

- The pheromone evaporation rate p can be critical.
- when evaporation was set to a value that was too high,
- S-ACO often converged to suboptimal paths
- For example, in fifteen trials with p set to 0.2, S-ACO converged:
- once to a path of length 8
- once to a path of length 7
- twice to a path of length 6
- Setting p to 0.01 S-ACO converged to the shortest path in all trials.

Results: Values of α

- Large values of α generally result in a worse behavior of S-ACO
- Because they excessively emphasize the initial random fluctuations.

References

Ant Colony Optimization: Part 2

References

- M. Dorigo and T. Stützle. Ant Colony Optimization, MIT Press, Cambridge, 2004.

The End

