Genetic Algorithms

Part 1: Introduction

Fall 2009

Instructor: Dr. Masoud Yaghini

Outline

- Evolutionary Computing (EC)
- Biological Background
- Landscape Example
- Natural Genetics
- Motivations for EC
- References

Evolutionary Computing (EC)

Evolutionary Computing (EC)

- EC is part of computer science
- EC is not part of life sciences/biology
- It draws inspiration from the process of natural evolution
- EC can be applied in biological research

The Main EC Metaphor

EC -	Nature
Optimization problem	Environment
Feasible solutions	Individuals living in that environment
Solutions quality	Fitness (Individual's degree of adaptation to its surrounding environment)

Evolutionary Computing Areas

Genetic Programming Evolution Strategies

Genetic Algorithms Evolutionary Programming

Brief History

- 1964, Rechenberg introduces evolution strategies
- 1965, L. Fogel, Owens and Walsh introduce evolutionary programming
- 1975, Holland introduces genetic algorithms
- 1992, Koza introduces genetic programming

Biological Background

Darwin's principles

- Variety of species individuals within the population
- Overproduction of offspring generation
 - Individuals have basic instinct towards reproduction
- Competition for limited resources
 - Environment only support a limited number of individuals
- Survival of the fittest
 - Those individuals, that are adopted or fit to the environmental condition best, have increased chance of reproduction

Evolution

How does it work?

- Initial population
 - Variety of shapes, colors, behaviors
 - Each individual fits differently to the environment

Evolution

How does it work?

- Initial population
- Reproduction
 - Offspring combines both parents properties
 - Siblings may differ in properties
 - Mutations may occur

Evolution

How does it work?

- Initial population
- Reproduction
- Limited environmental resources
 - Only a portion of the individuals survive
 - Survival chances according to fitness measure

Evolution

• Phenotypic traits:

- Behaviour / physical differences that affect response to environment
- Partly determined by inheritance, partly by factors during development
- Unique to each individual, partly as a result of random changes
- If phenotypic traits lead to higher chances of reproduction, then
 - Can be inherited
 - They will tend to increase in subsequent generations
 - Leading to new combinations of traits ...

Natural Genetics

Natural Genetics

- The information required to build a living organism is coded in the DNA of that organism
- Genotype (DNA inside) determines Phenotype

Natural Genetics

- Genes are encoding phenotypic characteristics
 - One gene may affect many traits
 - Many genes may affect one trait
- Small changes in the genotype lead to small changes in the organism (e.g., height, hair colour)
- The posibilities of the genes for one property is called Allele
- Genotypic variations are consequences of:
 - Recombination of genes by sexual reproduction
 - Mutation of genes

Genes and the Genome

- The complete genetic information in an individual's genotype is called the Genome
- Genes are encoded in strings of DNA called Chromosomes
- In most cells, there are two copies of each chromosome, called Diploid
- Within a species, most of the genetic material is the same

Example

 Human body cells contains 23 pairs of chromosomes which together define the attributes of the individual:

Reproductive Cells

- Gametes (i.e, sperm and egg cells) contain 23 individual chromosomes rather than 23 pairs
- Cells (gametes) with only one copy of each chromosome are called Haploid
- The haploid sperm cell merges with the haploid egg cell and forms a diploid cell, called Zygote
- The new organism develops from this zygote by the process named Ontogenesis
- All body cells contain the same genetic information as the zygote it original form

Mitosis

- Mitosis is copying the same genetic information to new offspring
- Mitosis is the normal way of growing of multicell structures

Meiosis

- Meiosis is the basis of sexual reproduction
- After meiotic division, gametes appear in the process
- Hence genetic information is shared between the parents in order to create new offspring
- During meiosis the pairs of chromosome undergo an operation called Crossing over

Crossing-over during meiosis

- Chromosome pairs align and duplicate
- Inner pairs link exchange parts of themselves

- Outcome is one copy of maternal/paternal chromosome plus two entirely new combinations
- After crossing over one of each pair goes into each gamete

Fertilisation

After fertilisation

- New zygote rapidly divides and creating many cells all with the same genetic contents
- Although all cells contain the same genes, depending on, for example where they are in the organism, they will behave differently
- This process of differential behaviour during development is called **ontogenesis**
- All of this uses, and is controlled by, the same mechanism for decoding the genes in DNA

Transcription, translation

A central claim in molecular genetics: only one way flow

Genotype — Phenotype

Genotype Phenotype

Lamarckism (saying that acquired features can be inherited) is thus wrong!

Mutation

- Occasionally some of the genetic material changes very slightly during this process
- This means that the child might have genetic material information not inherited from either parent
- This can be
 - Disastrous: offspring in not viable (most likely)
 - Neutral: new feature not influences fitness
 - Advantageous: strong new feature occurs

Landscape Example

Landscape metaphor

- The height dimension belongs to fitness
- The other two (or more) dimensions correspond to biological traits
- The x-y-plane holds all possible trait combinations
- Therefore, each different individual (phenotype) represents a single point on the landscape
- Population is therefore a "cloud" of points, moving on the landscape over time as it evolves - adaptation

Example with two traits

Landscape metaphor

- Selection "pushes" population up the landscape
- There are a number of points that are better than all their neighbouring solutions, we call each of these points a local optimum
- The highest of these points is called global optimum
- Random variations in feature distribution
 (+ or -) arising from sampling error can cause
 the population down hills, thus crossing valleys
 and leaving local optima

Motivations for EC

Motivations for GA

- Nature has always served as a source of inspiration for engineers and scientists
- The best problem solver known in nature is:
 - the (human) brain that created "the wheel, New York, wars and so on"
 - the evolution mechanism that created the human brain

Motivations for EC

- Developing, analyzing, applying problem solving methods (algorithms) is a central theme in mathematics and computer science
- Complexity of problems to be solved increases
- Consequence: Robust problem solving technology needed
 - Which do not need much tailoring for specific problems, and
 - Deliver good (not necessarily optimal) solutions within acceptable time
- EC do all this

Optimizations

 We have a model of our system and seek inputs that give us a specified goal

- e.g.
 - Crew scheduling problem, Train timetabling, & ...

References

References

- Eiben and Smith. Introduction to Evolutionary Computing, Springer-Verlag, New York, 2003.
- J. Dreo A. Petrowski, P. Siarry E. Taillard,
 Metaheuristics for Hard Optimization,
 Springer-Verlag, 2006.

The End