Genetic Algorithms
Part 3: The Knapsack Problem

Fall 2009
Instructor: Dr. Masoud Yaghini

Genetic Algorithms: Part 3

Outline
-]

Problem Definition
Representations

~itness Function

Handling of Constraints
Population

Parent Selection Mechanism
Variation Operators

Survivor Selection
Initialization and Termination
References

Problem Definition

Genetic Algorithms: Part 3
Example: The Knapsack problem

e There are nitems:
- Each item /has a weight w;
- Each item /has a value v,

e The knapsack has a limited
capacity of W units.

e \We can take one of each
item at most

max Zvi*xl. i=12,.,n
i

subjectto D> w. *x < W
A
]

x.€{0,1}
i

Genetic Algorithms: Part 3

Example: The Knapsack problem
< / |/

Item: 1 234567

Benefit: 5 8 3 2 7 9 4

Weight: 7 8 410 4 6 4
Knapsack holds a maximum of 22 pounds
Fill it to get the maximum benefit

The problem description:

~ Maximize ZV,-
i

- While Zwi <W
i

Representations

Genetic Algorithms: Part 3
Representations
|
e Candidate solutions (individuals) exist in
phenotype space
e They are encoded in chromosomes, which exist
In genotype space
e Chromosomes contain genes, which are usually
In fixed positions called (loci / locus) and have a
value (allele)

Genetic Algorithms: Part 3

Representations
-«]

e For example, given an optimization problem on
iIntegers:
- The given set of integers would form the set of
phenotypes
- They can be represented by binary code
- 18 would be seen as a phenotype, and 10010 as a
genotype representing it
e In order to find the global optimum, every
feasible solution must be represented in
genotype space

Genetic Algorithms: Part 3

Representations
|
e A solution (a good phenotype) is obtained by
decoding the best genotype after termination

e Coding can be done in two different ways:
- Encoding:
e the mapping from the phenotype to the genotype space
e phenotype=> genotype
- Decoding:
e the inverse mapping from genotypes to phenotypes
e genotype=> phenotype

Genetic Algorithms: Part 3
Binary Representation

Genotype space =

Phenotype space (0,111
Encoding
(representahon)) 1001000 /
10010010
010001001
< 011101001 V

Decoding
(inverse representation)

Genetic Algorithms: Part 3

Knapsack Example: Representations
o —————/—////]

e Solutions take the form of a string of 1’s and 0’s

e Where
0 = don'’t take the item in a given positions
1 = take the item in a given positions

e Solutions: Also known as strings of genes called
Chromosomes

e Example chromosomes:
1100100 = items {1,2,5} included in sack
0010000 = items {3} included in sack
0001100 = items {4,5} included in sack
0100001 = items {2,7} included in sack
e The genotype space Gis the set of all strings with size 2"

Fithess Function

Genetic Algorithms: Part 3

Fitness Function
. 000000000000

e Fitnhess function represents the requirements
that the population should adapt to

e |t defines what improvement means
- I.e, quality function or objective function

e Assigns a single real-valued fithess to each
phenotype which forms the basis for selection

e Typically we talk about fitness being maximised

- Some problems may be best posed as
minimisation problems, but conversion is easy

Genetic Algorithms: Part 3

Knapsack Example: Fitness Function
o —————/—////]

e [he fithess function as the total benefit,
which is the sum of

- the gene values in a string solution x their
representative benefit coefficient

Fitness = Zvi : (Z w, < Wj

l

Genetic Algorithms: Part 3

Knapsack Example: Solution 1
< /0]

ltem 1 2 3 4 3 6 /
Solution |1 1 0 0 1 0 0
Benefit S 8 3 2 / 9 4
Weight 7 8 4 10 4 6 4

e Fitness:5+8 +7 =20
e Weight: 7 +8 +4 =19 <=22

Handling of Constraints

Genetic Algorithms: Part 3

Knapsack Example: Solution 2 overweighted
< /0]

ltem 1 2 3 4 S} 6 /
Solution |0 1 0 1 0 1 0
Benefit 3} 8 3 2 / 9 4
Weight 7 8 4 10 |4 6 4

e Weight: 8 + 10 + 6 =24 > 22

Genetic Algorithms: Part 3

The trouble with constraints and EAs
-C—————“F" /20]

e Standard reproduction operators are blind to
constraints.

e Recombining two feasible individuals can result
in infeasible new individuals.

e Mutating a feasible individual can result in an
infeasible new individual.

Genetic Algorithms: Part 3
Handling of Constraints
<« 00000000/
e Constraint handling:
- Eliminating infeasible candidates

— Penalizing functions
- Repairing infeasible candidates

Genetic Algorithms: Part 3
Eliminating of Infeasible Candidates

. 000000000000
e Additional version of penalty approach (i.e., the
most severe penalty: death penalty

e Disadvantages:

1. For some problems the probability of generating a
feasible solution is relatively small and the algorithm

spends a significant amount of time evaluating illegal
individuals.

2. In this approach non-feasible solutions do not
contribute to the gene-pool of any population

Genetic Algorithms: Part 3

Penalizing Functions
@«]

e Generating potential solutions without
considering the constraints and then to penalize
them by decreasing the "goodness" of the
evaluation function.

e A variety of possible penalty functions which can
be applied
— assign a constant as a penalty measure

— assign a penalty measure depend on the degree of
violation: the larger violation is, the greater penalty is
Imposed

— the growth of the penalty can be logarithmic, linear,
guadratic, exponential, etc.

Genetic Algorithms: Part 3

Knapsack Example: if overweight
< #0000~/

e Penalize:

oz

Fitness =< !
W — Z W : (otherwise)

.

Genetic Algorithms: Part 3

Knapsack Example: Solution 2 overweighted
< /0]

ltem 1 2 3 4 S} 6 /
Solution |0 1 0 1 0 1 0
Benefit 3} 8 3 2 / 9 4
Weight 7 8 4 10 |4 6 4

e Fitness (Benefit): 22 - (8 + 10 + 6) = -2
e Weight: 8 + 10 + 6 =24 > 22

Genetic Algorithms: Part 3

Repair Algorithms
o —————/—////]

e Special repair algorithms to "correct" any
iInfeasible solutions so generated.

e Disadvantages:

1. Such repair algorithms might be computationally
intensive to run and the resulting algorithm must be
tailored to the particular application.

2. Moreover, for some problems the process of
correcting a solution may be as difficult as solving
the original problem.

Genetic Algorithms: Part 3

Knapsack Example: if overweight
o _00000000000000_]
e Repair:
— When creating solution we read from left to right
along binary string,

- We first check to see if including the item would
break our capacity constraint

- We interpret it as meaning include this item, IF it
does not take us over the weight constraint

- We do not add the right of the current position to the
solution

— This makes the mapping from genotype to phenotype
space many-to-one.

Population

Genetic Algorithms: Part 3
Population
o 000001
e Population holds (representations of) possible
solutions

e Usually has a fixed size and is a multiset of
genotypes

e Selection operators usually take whole
population into account

- l.e., parent selection mechanisms are relative to
current generation

Genetic Algorithms: Part 3

Population
-«]

e Diversity of a population refers to the
difference solutions
- The number of fitness's / phenotypes / genotypes
present
e Population size may be around 500, but for
difficult problems is can be larger

— Too few chromosomes = the GA won't have the
diversity needed to find a good solution

- Too many = the GA will be much slower, without
much improvement in the quality of the solution

Genetic Algorithms: Part 3

Knapsack Example: Population
S

e We will work with a population size of 500

e We will create same number of offspring as
we have members our initial population (500)

Parent Selection Mechanism

Genetic Algorithms: Part 3

Parent Selection Mechanism
<

e An individual is a parent if it has been selected
to create offspring

e In GA, parent selection is usually probabilistic:

- high quality individuals (solutions) more likely to
become parents than low quality

— but not guaranteed
- worst in current population usually has non-zero
probability of becoming a parent
e This stochastic nature can aid escape from local
optima

Genetic Algorithms: Part 3

Knapsack Example: Parents Selection
< 0]
e We will use a tournament for selecting the
parents
- where each time we pick two members of the

population at random (with replacement), and the one
with the highest fitness value

Variation Operators

Genetic Algorithms: Part 3

Variation Operators
o

e Variation operators are to generate new candidate
solutions

e Usually divided into two types according to their arity
(number of inputs):
- Arity = 1 : mutation operators
- Arity 2 2 : Recombination operators (e.g. Arity = 2 typically
called crossover)
e There has been much debate about relative importance
of recombination and mutation
-~ Nowadays most GAs use both

— Choice of particular variation operators depends upon genotype
representation used.

Genetic Algorithms: Part 3
Mutation
< 0]
e Mutation is unary variation operator (it applies
to one object as input)

e Acts on one genotype and delivers another, the
child or offspring of it

e A mutation operator is stochastic

e Nature of the mutation operator depends upon
the genotype representation

- For example: flipping one or several bits with a given
(small) probability.

Genetic Algorithms: Part 3

Recombination
-C—————“F" /20]

e A binary variation operator (it applies to two
objects as input) is called recombination or
crossover

e It merges information from two parent
genotypes into one or two offspring genotypes

e Similar to mutation recombination is a
stochastic operator
— Choice of what information to merge is stochastic

Genetic Algorithms: Part 3
Recombination
< 0]

e The principle behind recombination is simple,

- by mating two individuals with different but desirable
features, we can produce an offspring that combines
both of two features

e Most offspring may be worse, or the same as the
parents

e Hope is that some are better by combining
elements of genotypes that lead to good traits

e Principle has been used for millennia by
breeders of plants and livestock

Genetic Algorithms: Part 3
Knapsack Example: Recombination
|

e A suitable recombination operator is one-point

crossover
e We will apply crossover

— with 70% probability and

— for other 30% we will make copies of the parents

e We align two parents for crossing over and pick
a random point along their length

e The two offspring are created by exchanging the
tails of the parents at that point

Genetic Algorithms: Part 3
Knapsack Example: Mutation Operator
<]
e A suitable mutation operator is so-called bit-
flipping
e Mutation rate:
- In each position we invert the value with a small
probability [0, 1)
e We define a mutation rate of 2= 1/n,

— I.e. that on average 1 gene per recombination
mutated

— n: number of genes in a chromosome

Genetic Algorithms: Part 3

Knapsack Example: Crossover & Mutation Operator
o 000000000000000__]

Crossover Mutaion New Genotype
1100100
I_I_I

I_I_I

1100101 —— 1101101

Ll
I_I_I

1100001

Genetic Algorithms: Part 3

Knapsack Example: Crossover & Mutation Operator

Parent 1 101/0111
Parent 2 ‘/1100011
Child 1 101/0011
Child 2 110/011 04 Mutation

Survivor Selection

Genetic Algorithms: Part 3

Survivor Selection (Replacement)
< /0]
e Survivor selection mechanism (replacement)
IS called after created the offspring of the
selected parents

e Most GAs use fixed population size so need a
way of going from (parents + offspring) to next
generation

e Survivor selection often is deterministic

- Fitness based: e.g., rank parents+offspring and take
best

- Age based: make as many offspring as parents and
delete all parents

Genetic Algorithms: Part 3
Knapsack Example: Survivor Selection
< 0]

e We will use a generational scheme for survivor
selection

- In this scheme, all the population in each iteration are
discarded and replaced by their offspring

Initialization and Termination

Genetic Algorithms: Part 3

Initialization
-~

e Initialization usually done at random

e The first population is created by randomly
generated individuals

e We can use problem-specific heuristics, to seed
an initial population with higher fitness

e Need to ensure even spread and mixture of
possible allele values

Genetic Algorithms: Part 3
Termination
<« 000000000]
e Termination condition checked every
generation

e Reaching some (known/hoped for) fithess

— GAs are stochastic and there are no guarantees to
reach an specific fitness

e [herefore we need another condition

Genetic Algorithms: Part 3

Termination
-~

e Options for certainly stops:
- Reaching maximum allowed CPU time elapses

- Reaching some maximum allowed number of
generations

- Reaching some specified number of generations
without fithess improvement

- Reaching population convergence

Genetic Algorithms: Part 3
Convergence
< 0]

e Gene convergence:

- when 95% of the individuals have the same value for
that gene

e Population convergence:
- when all genes (chromosomes) have converged
— average fitness approaches best

Genetic Algorithms: Part 3

Convergence
. 000000000000
e Example 1: Gene convergence
- 100% of 4" gene is 1

e Example 2: Population convergence
- 75% of genes is same

Example 1: Example 2:
i1: 01010 i1: 11111
i2: 10010 i2: 11111
13: 00010 i3: 11010

14: 11010 14: 11111

Genetic Algorithms: Part 3

Convergence
S —

OneMax problem: Example run

160 Best fitness g
MM_H__\:?.:—H_—:—_ e
140 L T T s 7
ﬁff‘“"“ Average fitness
120 | o i
I""-._l'-.l Pl
.'-_:. __.-"
g 100 B 1
k] e
£ 807 l
& g
60 - i
40 - 1
20 | I
| Standard deviation
D e T T Jrr e S e e e e e e e T e Y T
0 50 100 150 200

Generations

Genetic Algorithms: Part 3
Knapsack Example: Initialization & Termination
a]
e Initialization:

- We all do initialization by random choice of 0 and 1 in
each position of our initial population

e Termination:

— We will run our algorithm until no improvement in the
fitness of the best number of the population has been
observed for 25 generations

Genetic Algorithms: Part 3

Knapsack Example: Summary
-

Representation: Binary strings of length n
Recombination: One-point crossover
Recombination probability: 70%

Mutation: Each value inverted with independent
probability P

Mutation probability P _: 1/n (Average 1 gene per
recombination mutated)

Parent Selection: Best out of random 2 (Tournament)

Genetic Algorithms: Part 3

Knapsack Example: Summary
-

Survivor Selection: Replace all (Generational)
Population Size: 500

Number of offspring: 500

Initialization: Random

Termination Condition: No improvement in last 25
generations

Note: this only one possible set of operators and
parameters!

References

Genetic Algorithms: Part 3
References
|
e Eiben and Smith. Introduction to Evolutionary
Computing, Springer-Verlag, New York, 20083.

e J. Dreo A. Petrowski, P. Siarry E. Taillard,
Metaheuristics for Hard Optimization,
Springer-Verlag, 2006.

