Genetic Algorithms

Part 3: The Knapsack Problem

Fall 2009

Instructor: Dr. Masoud Yaghini

Outline

- Problem Definition
- Representations
- Fitness Function
- Handling of Constraints
- Population
- Parent Selection Mechanism
- Variation Operators
- Survivor Selection
- Initialization and Termination
- References

Problem Definition

Example: The Knapsack problem

- There are *n* items:
 - Each item / has a weight w_i
 - Each item *i* has a value v_i
- The knapsack has a limited capacity of W units.
- We can take one of each item at most

$$\max \sum_{i} v_{i} * x_{i} \qquad i = 1, 2, ..., n$$

$$subject to \sum_{i} w_{i} * x_{i} \leq W$$

$$x_{i} \in \{0, 1\}$$

Example: The Knapsack problem

- Item: 1 2 3 4 5 6 7
- Benefit: 5 8 3 2 7 9 4
- Weight: 7 8 4 10 4 6 4
- Knapsack holds a maximum of 22 pounds
- Fill it to get the maximum benefit
- The problem description:

- Maximize
$$\sum_{i} v_{i}$$

- While
$$\sum_{i}^{i} w_{i} \leq W$$

- Candidate solutions (individuals) exist in phenotype space
- They are encoded in chromosomes, which exist in genotype space
- Chromosomes contain genes, which are usually in fixed positions called (loci / locus) and have a value (allele)

- For example, given an optimization problem on integers:
 - The given set of integers would form the set of phenotypes
 - They can be represented by binary code
 - 18 would be seen as a phenotype, and 10010 as a genotype representing it
- In order to find the global optimum, every feasible solution must be represented in genotype space

- A solution (a good phenotype) is obtained by decoding the best genotype after termination
- Coding can be done in two different ways:
 - Encoding:
 - the mapping from the phenotype to the genotype space
 - phenotype=> genotype
 - Decoding:
 - the inverse mapping from genotypes to phenotypes
 - genotype=> phenotype

Binary Representation

Knapsack Example: Representations

- Solutions take the form of a string of 1's and 0's
- Where
 - 0 = don't take the item in a given positions
 - 1 = take the item in a given positions
- Solutions: Also known as strings of genes called Chromosomes
- Example chromosomes:
 - $1100100 \Rightarrow \text{items } \{1,2,5\} \text{ included in sack}$
 - $0010000 \Rightarrow \text{items } \{3\} \text{ included in sack}$
 - $0001100 \Rightarrow \text{items } \{4,5\} \text{ included in sack}$
 - $0100001 \Rightarrow \text{items } \{2,7\} \text{ included in sack}$
- The genotype space G is the set of all strings with size 2^n

Fitness Function

Fitness Function

- Fitness function represents the requirements that the population should adapt to
- It defines what improvement means
 - i.e, quality function or objective function
- Assigns a single real-valued fitness to each phenotype which forms the basis for selection
- Typically we talk about fitness being maximised
 - Some problems may be best posed as minimisation problems, but conversion is easy

Knapsack Example: Fitness Function

- The fitness function as the total benefit, which is the sum of
 - the gene values in a string solution x their representative benefit coefficient

$$Fitness = \sum_{i} v_{i} : \left(\sum_{i} w_{i} \le W\right)$$

Knapsack Example: Solution 1

Item	1	2	3	4	5	6	7
Solution	1	1	0	0	1	0	0
Benefit	5	8	3	2	7	9	4
Weight	7	8	4	10	4	6	4

• Fitness: 5 + 8 + 7 = 20

• Weight: $7 + 8 + 4 = 19 \le 22$

Handling of Constraints

Knapsack Example: Solution 2 overweighted

Item	1	2	3	4	5	6	7
Solution	0	1	0	1	0	1	0
Benefit	5	8	3	2	7	9	4
Weight	7	8	4	10	4	6	4

• Weight: 8 + 10 + 6 = 24 > 22

The trouble with constraints and EAs

- Standard reproduction operators are blind to constraints.
- Recombining two feasible individuals can result in infeasible new individuals.
- Mutating a feasible individual can result in an infeasible new individual.

Handling of Constraints

Constraint handling:

- Eliminating infeasible candidates
- Penalizing functions
- Repairing infeasible candidates

Eliminating of Infeasible Candidates

- Additional version of penalty approach (i.e., the most severe penalty: death penalty
- Disadvantages:
 - 1. For some problems the probability of generating a feasible solution is relatively small and the algorithm spends a significant amount of time evaluating illegal individuals.
 - 2. In this approach non-feasible solutions do not contribute to the gene-pool of any population

Penalizing Functions

- Generating potential solutions without considering the constraints and then to penalize them by decreasing the "goodness" of the evaluation function.
- A variety of possible penalty functions which can be applied
 - assign a constant as a penalty measure
 - assign a penalty measure depend on the degree of violation: the larger violation is, the greater penalty is imposed
 - the growth of the penalty can be logarithmic, linear, quadratic, exponential, etc.

Knapsack Example: if overweight

Penalize:

$$Fitness = \begin{cases} \sum_{i} v_{i} : \left(\sum_{i} w_{i} \leq W\right) \\ W - \sum_{i} w_{i} : (otherwise) \end{cases}$$

Knapsack Example: Solution 2 overweighted

Item	1	2	3	4	5	6	7
Solution	0	1	0	1	0	1	0
Benefit	5	8	3	2	7	9	4
Weight	7	8	4	10	4	6	4

• Fitness (Benefit): 22 - (8 + 10 + 6) = -2

• Weight: 8 + 10 + 6 = 24 > 22

Repair Algorithms

 Special repair algorithms to "correct" any infeasible solutions so generated.

Disadvantages:

- 1. Such repair algorithms might be computationally intensive to run and the resulting algorithm must be tailored to the particular application.
- 2. Moreover, for some problems the process of correcting a solution may be as difficult as solving the original problem.

Knapsack Example: if overweight

Repair:

- When creating solution we read from left to right along binary string,
- We first check to see if including the item would break our capacity constraint
- We interpret it as meaning include this item, IF it does not take us over the weight constraint
- We do not add the right of the current position to the solution
- This makes the mapping from genotype to phenotype space many-to-one.

Population

Population

- Population holds (representations of) possible solutions
- Usually has a fixed size and is a multiset of genotypes
- Selection operators usually take whole population into account
 - i.e., parent selection mechanisms are relative to current generation

Population

- Diversity of a population refers to the difference solutions
 - The number of fitness's / phenotypes / genotypes present
- Population size may be around 500, but for difficult problems is can be larger
 - Too few chromosomes ⇒ the GA won't have the diversity needed to find a good solution
 - Too many ⇒ the GA will be much slower, without much improvement in the quality of the solution

Knapsack Example: Population

- We will work with a population size of 500
- We will create same number of offspring as we have members our initial population (500)

Parent Selection Mechanism

Parent Selection Mechanism

- An individual is a parent if it has been selected to create offspring
- In GA, parent selection is usually probabilistic:
 - high quality individuals (solutions) more likely to become parents than low quality
 - but not guaranteed
 - worst in current population usually has non-zero probability of becoming a parent
- This stochastic nature can aid escape from local optima

Knapsack Example: Parents Selection

- We will use a tournament for selecting the parents
 - where each time we pick two members of the population at random (with replacement), and the one with the highest fitness value

Variation Operators

Variation Operators

- Variation operators are to generate new candidate solutions
- Usually divided into two types according to their arity (number of inputs):
 - Arity = 1 : mutation operators
 - Arity ≥ 2 : Recombination operators (e.g. Arity = 2 typically called crossover)
- There has been much debate about relative importance of recombination and mutation
 - Nowadays most GAs use both
 - Choice of particular variation operators depends upon genotype representation used.

Mutation

- Mutation is unary variation operator (it applies to one object as input)
- Acts on one genotype and delivers another, the child or offspring of it
- A mutation operator is stochastic
- Nature of the mutation operator depends upon the genotype representation
 - For example: flipping one or several bits with a given (small) probability.

Recombination

- A binary variation operator (it applies to two objects as input) is called recombination or crossover
- It merges information from two parent genotypes into one or two offspring genotypes
- Similar to mutation recombination is a stochastic operator
 - Choice of what information to merge is stochastic

Recombination

- The principle behind recombination is simple,
 - by mating two individuals with different but desirable features, we can produce an offspring that combines both of two features
- Most offspring may be worse, or the same as the parents
- Hope is that some are better by combining elements of genotypes that lead to good traits
- Principle has been used for millennia by breeders of plants and livestock

Knapsack Example: Recombination

- A suitable recombination operator is one-point crossover
- We will apply crossover
 - with 70% probability and
 - for other 30% we will make copies of the parents
- We align two parents for crossing over and pick a random point along their length
- The two offspring are created by exchanging the tails of the parents at that point

Knapsack Example: Mutation Operator

- A suitable mutation operator is so-called bitflipping
- Mutation rate:
 - In each position we invert the value with a small probability [0, 1)
- We define a **mutation rate** of $P_m = 1/n$,
 - i.e. that on average 1 gene per recombination mutated
 - n: number of genes in a chromosome

Knapsack Example: Crossover & Mutation Operator

Knapsack Example: Crossover & Mutation Operator

Survivor Selection

Survivor Selection (Replacement)

- Survivor selection mechanism (replacement)
 is called after created the offspring of the
 selected parents
- Most GAs use fixed population size so need a way of going from (parents + offspring) to next generation
- Survivor selection often is deterministic
 - Fitness based: e.g., rank parents+offspring and take best
 - Age based: make as many offspring as parents and delete all parents

Knapsack Example: Survivor Selection

- We will use a generational scheme for survivor selection
 - In this scheme, all the population in each iteration are discarded and replaced by their offspring

Initialization and Termination

Initialization

- Initialization usually done at random
- The first population is created by randomly generated individuals
- We can use problem-specific heuristics, to seed an initial population with higher fitness
- Need to ensure even spread and mixture of possible allele values

Termination

- Termination condition checked every generation
- Reaching some (known/hoped for) fitness
 - GAs are stochastic and there are no guarantees to reach an specific fitness
- Therefore we need another condition

Termination

- Options for certainly stops:
 - Reaching maximum allowed CPU time elapses
 - Reaching some maximum allowed number of generations
 - Reaching some specified number of generations without fitness improvement
 - Reaching population convergence

Convergence

Gene convergence:

 when 95% of the individuals have the same value for that gene

Population convergence:

- when all genes (chromosomes) have converged
- average fitness approaches best

Convergence

- Example 1: Gene convergence
 - 100% of 4th gene is 1
- Example 2: Population convergence
 - 75% of genes is same

Example 1:	Example 2
i1: 01010	i1: 11111
i2: 10010	i2: 11111
i3: 00010	i3: 11010
i4: 11010	i4: 11111

Convergence

Knapsack Example: Initialization & Termination

Initialization:

 We all do initialization by random choice of 0 and 1 in each position of our initial population

Termination:

 We will run our algorithm until no improvement in the fitness of the best number of the population has been observed for 25 generations

Knapsack Example: Summary

Representation: Binary strings of length *n*

Recombination: One-point crossover

Recombination probability: 70%

Mutation: Each value inverted with independent probability P_m

Mutation probability P_m : 1/n (Average 1 gene per recombination mutated)

Parent Selection: Best out of random 2 (Tournament)

Knapsack Example: Summary

Survivor Selection: Replace all (Generational)

Population Size: 500

Number of offspring: 500

Initialization: Random

Termination Condition: No improvement in last 25

generations

Note: this **only one possible** set of operators and parameters!

References

References

- Eiben and Smith. <u>Introduction to Evolutionary</u>
 <u>Computing</u>, Springer-Verlag, New York, 2003.
- J. Dreo A. Petrowski, P. Siarry E. Taillard,
 Metaheuristics for Hard Optimization,
 Springer-Verlag, 2006.

The End