
Genetic Algorithms

Part 3: The Knapsack Problem

Fall 2009

Instructor: Dr. Masoud Yaghini

Genetic Algorithms: Part 3

Outline

� Problem Definition

� Representations

� Fitness Function

� Handling of Constraints

� Population

� Parent Selection Mechanism

� Variation Operators

� Survivor Selection

� Initialization and Termination

� References

Problem Definition

Genetic Algorithms: Part 3

Example: The Knapsack problem

� There are n items:

– Each item i has a weight wi

– Each item i has a value vi

� The knapsack has a limited

capacity of W units.

We can take one of each � We can take one of each

item at most

}1,0{

*

,...,2,1*max

∈

≤

=

∑

∑

i
x

i

W
i

x
i

wtosubject

ni

i

ii xv

Genetic Algorithms: Part 3

Example: The Knapsack problem

� Item: 1 2 3 4 5 6 7

� Benefit: 5 8 3 2 7 9 4

� Weight: 7 8 4 10 4 6 4

� Knapsack holds a maximum of 22 pounds

� Fill it to get the maximum benefit� Fill it to get the maximum benefit

� The problem description:

– Maximize

– While

∑
i

iv

Ww
i

i ≤∑

Representations

Genetic Algorithms: Part 3

Representations

� Candidate solutions (individuals) exist in

phenotype space

� They are encoded in chromosomes, which exist

in genotype space

� Chromosomes contain genes, which are usually � Chromosomes contain genes, which are usually

in fixed positions called (loci / locus) and have a

value (allele)

Genetic Algorithms: Part 3

Representations

� For example, given an optimization problem on

integers:

– The given set of integers would form the set of

phenotypes

– They can be represented by binary code– They can be represented by binary code

– 18 would be seen as a phenotype, and 10010 as a

genotype representing it

� In order to find the global optimum, every

feasible solution must be represented in

genotype space

Genetic Algorithms: Part 3

Representations

� A solution (a good phenotype) is obtained by

decoding the best genotype after termination

� Coding can be done in two different ways:

– Encoding:

� the mapping from the phenotype to the genotype space� the mapping from the phenotype to the genotype space

� phenotype=> genotype

– Decoding:

� the inverse mapping from genotypes to phenotypes

� genotype=> phenotype

Genetic Algorithms: Part 3

Genotype space =

{0,1}LPhenotype space

Encoding

(representation)
10010001

Binary Representation

Decoding

(inverse representation)

011101001

010001001

10010010

Genetic Algorithms: Part 3

Knapsack Example: Representations

� Solutions take the form of a string of 1’s and 0’s

� Where

0 = don’t take the item in a given positions

1 = take the item in a given positions

� Solutions: Also known as strings of genes called
Chromosomes

� Example chromosomes:

1100100 ⇒ items {1,2,5} included in sack

0010000 ⇒ items {3} included in sack

0001100 ⇒ items {4,5} included in sack

0100001 ⇒ items {2,7} included in sack

� The genotype space G is the set of all strings with size 2n

Fitness Function

Genetic Algorithms: Part 3

Fitness Function

� Fitness function represents the requirements

that the population should adapt to

� It defines what improvement means

– i.e, quality function or objective function

� Assigns a single real-valued fitness to each � Assigns a single real-valued fitness to each

phenotype which forms the basis for selection

� Typically we talk about fitness being maximised

– Some problems may be best posed as

minimisation problems, but conversion is easy

Genetic Algorithms: Part 3

Knapsack Example: Fitness Function

� The fitness function as the total benefit,
which is the sum of
– the gene values in a string solution x their

representative benefit coefficient









≤= ∑∑ WwvFitness

i

i

i

i :

Genetic Algorithms: Part 3

Knapsack Example: Solution 1

Item 1 2 3 4 5 6 7

Solution 1 1 0 0 1 0 0

Benefit 5 8 3 2 7 9 4

� Fitness: 5 + 8 + 7 = 20

� Weight: 7 + 8 + 4 = 19 <= 22

Weight 7 8 4 10 4 6 4

Handling of Constraints

Genetic Algorithms: Part 3

Knapsack Example: Solution 2 overweighted

Item 1 2 3 4 5 6 7

Solution 0 1 0 1 0 1 0

Benefit 5 8 3 2 7 9 4

� Weight: 8 + 10 + 6 = 24 > 22

Benefit 5 8 3 2 7 9 4

Weight 7 8 4 10 4 6 4

Genetic Algorithms: Part 3

The trouble with constraints and EAs

� Standard reproduction operators are blind to

constraints.

� Recombining two feasible individuals can result

in infeasible new individuals.

� Mutating a feasible individual can result in an � Mutating a feasible individual can result in an

infeasible new individual.

Genetic Algorithms: Part 3

Handling of Constraints

� Constraint handling:

– Eliminating infeasible candidates

– Penalizing functions

– Repairing infeasible candidates

Genetic Algorithms: Part 3

Eliminating of Infeasible Candidates

� Additional version of penalty approach (i.e., the

most severe penalty: death penalty

� Disadvantages:

1. For some problems the probability of generating a

feasible solution is relatively small and the algorithm feasible solution is relatively small and the algorithm

spends a significant amount of time evaluating illegal

individuals.

2. In this approach non-feasible solutions do not

contribute to the gene-pool of any population

Genetic Algorithms: Part 3

Penalizing Functions

� Generating potential solutions without

considering the constraints and then to penalize

them by decreasing the "goodness" of the

evaluation function.

� A variety of possible penalty functions which can � A variety of possible penalty functions which can

be applied

– assign a constant as a penalty measure

– assign a penalty measure depend on the degree of

violation: the larger violation is, the greater penalty is

imposed

– the growth of the penalty can be logarithmic, linear,

quadratic, exponential, etc.

Genetic Algorithms: Part 3

Knapsack Example: if overweight

� Penalize:

()






−









≤

=

∑

∑∑ Wwv

Fitness i

i

i

i :

()





−∑ otherwisewW

i

i :

Genetic Algorithms: Part 3

Knapsack Example: Solution 2 overweighted

Item 1 2 3 4 5 6 7

Solution 0 1 0 1 0 1 0

Benefit 5 8 3 2 7 9 4

� Fitness (Benefit): 22 – (8 + 10 + 6) = -2

� Weight: 8 + 10 + 6 = 24 > 22

Benefit 5 8 3 2 7 9 4

Weight 7 8 4 10 4 6 4

Genetic Algorithms: Part 3

Repair Algorithms

� Special repair algorithms to "correct" any

infeasible solutions so generated.

� Disadvantages:

1. Such repair algorithms might be computationally

intensive to run and the resulting algorithm must be intensive to run and the resulting algorithm must be

tailored to the particular application.

2. Moreover, for some problems the process of

correcting a solution may be as difficult as solving

the original problem.

Genetic Algorithms: Part 3

Knapsack Example: if overweight

� Repair:
– When creating solution we read from left to right

along binary string,

– We first check to see if including the item would

break our capacity constraintbreak our capacity constraint

– We interpret it as meaning include this item, IF it

does not take us over the weight constraint

– We do not add the right of the current position to the

solution

– This makes the mapping from genotype to phenotype

space many-to-one.

Population

Genetic Algorithms: Part 3

Population

� Population holds (representations of) possible

solutions

� Usually has a fixed size and is a multiset of

genotypes

� Selection operators usually take whole � Selection operators usually take whole

population into account

– i.e., parent selection mechanisms are relative to

current generation

Genetic Algorithms: Part 3

Population

� Diversity of a population refers to the

difference solutions

– The number of fitness's / phenotypes / genotypes

present

� Population size may be around 500, but for � Population size may be around 500, but for

difficult problems is can be larger

– Too few chromosomes ⇒ the GA won’t have the

diversity needed to find a good solution

– Too many ⇒ the GA will be much slower, without

much improvement in the quality of the solution

Genetic Algorithms: Part 3

Knapsack Example: Population

� We will work with a population size of 500

� We will create same number of offspring as

we have members our initial population (500)

Parent Selection Mechanism

Genetic Algorithms: Part 3

Parent Selection Mechanism

� An individual is a parent if it has been selected

to create offspring

� In GA, parent selection is usually probabilistic:

– high quality individuals (solutions) more likely to

become parents than low qualitybecome parents than low quality

– but not guaranteed

– worst in current population usually has non-zero

probability of becoming a parent

� This stochastic nature can aid escape from local

optima

Genetic Algorithms: Part 3

Knapsack Example: Parents Selection

� We will use a tournament for selecting the

parents

– where each time we pick two members of the

population at random (with replacement), and the one

with the highest fitness valuewith the highest fitness value

Variation Operators

Genetic Algorithms: Part 3

Variation Operators

� Variation operators are to generate new candidate

solutions

� Usually divided into two types according to their arity
(number of inputs):

– Arity = 1 : mutation operators

Arity ≥ 2 : Recombination operators (e.g. Arity = 2 typically – Arity ≥ 2 : Recombination operators (e.g. Arity = 2 typically
called crossover)

� There has been much debate about relative importance

of recombination and mutation

– Nowadays most GAs use both

– Choice of particular variation operators depends upon genotype
representation used.

Genetic Algorithms: Part 3

Mutation

� Mutation is unary variation operator (it applies

to one object as input)

� Acts on one genotype and delivers another, the

child or offspring of it

� A mutation operator is stochastic � A mutation operator is stochastic

� Nature of the mutation operator depends upon

the genotype representation

– For example: flipping one or several bits with a given

(small) probability.

Genetic Algorithms: Part 3

Recombination

� A binary variation operator (it applies to two

objects as input) is called recombination or

crossover

� It merges information from two parent

genotypes into one or two offspring genotypesgenotypes into one or two offspring genotypes

� Similar to mutation recombination is a

stochastic operator

– Choice of what information to merge is stochastic

Genetic Algorithms: Part 3

Recombination

� The principle behind recombination is simple,

– by mating two individuals with different but desirable

features, we can produce an offspring that combines

both of two features

� Most offspring may be worse, or the same as the � Most offspring may be worse, or the same as the

parents

� Hope is that some are better by combining

elements of genotypes that lead to good traits

� Principle has been used for millennia by

breeders of plants and livestock

Genetic Algorithms: Part 3

Knapsack Example: Recombination

� A suitable recombination operator is one-point

crossover

� We will apply crossover

– with 70% probability and

– for other 30% we will make copies of the parents– for other 30% we will make copies of the parents

� We align two parents for crossing over and pick

a random point along their length

� The two offspring are created by exchanging the

tails of the parents at that point

Genetic Algorithms: Part 3

Knapsack Example: Mutation Operator

� A suitable mutation operator is so-called bit-

flipping

� Mutation rate:

– In each position we invert the value with a small

probability [0, 1)probability [0, 1)

� We define a mutation rate of Pm = 1/n,

– i.e. that on average 1 gene per recombination

mutated

– n: number of genes in a chromosome

Genetic Algorithms: Part 3

Knapsack Example: Crossover & Mutation Operator

Genetic Algorithms: Part 3

1 0 1 0 1 1 1

1 1 0 0 0 1 1

Parent 1

Parent 2

Knapsack Example: Crossover & Mutation Operator

1 0 1 0 0 1 1

1 1 0 0 1 1 0

Child 1

Child 2 Mutation

Survivor Selection

Genetic Algorithms: Part 3

Survivor Selection (Replacement)

� Survivor selection mechanism (replacement)

is called after created the offspring of the

selected parents

� Most GAs use fixed population size so need a

way of going from (parents + offspring) to next way of going from (parents + offspring) to next

generation

� Survivor selection often is deterministic

– Fitness based: e.g., rank parents+offspring and take

best

– Age based: make as many offspring as parents and

delete all parents

Genetic Algorithms: Part 3

Knapsack Example: Survivor Selection

� We will use a generational scheme for survivor

selection

– In this scheme, all the population in each iteration are

discarded and replaced by their offspring

Initialization and Termination

Genetic Algorithms: Part 3

Initialization

� Initialization usually done at random

� The first population is created by randomly

generated individuals

� We can use problem-specific heuristics, to seed

an initial population with higher fitnessan initial population with higher fitness

� Need to ensure even spread and mixture of

possible allele values

Genetic Algorithms: Part 3

Termination

� Termination condition checked every

generation

� Reaching some (known/hoped for) fitness

– GAs are stochastic and there are no guarantees to

reach an specific fitnessreach an specific fitness

� Therefore we need another condition

Genetic Algorithms: Part 3

Termination

� Options for certainly stops:

– Reaching maximum allowed CPU time elapses

– Reaching some maximum allowed number of
generations

– Reaching some specified number of generations – Reaching some specified number of generations
without fitness improvement

– Reaching population convergence

Genetic Algorithms: Part 3

Convergence

� Gene convergence:

– when 95% of the individuals have the same value for

that gene

� Population convergence:

– when all genes (chromosomes) have converged – when all genes (chromosomes) have converged

– average fitness approaches best

Genetic Algorithms: Part 3

Convergence

� Example 1: Gene convergence

– 100% of 4th gene is 1

� Example 2: Population convergence

– 75% of genes is same

Example 1: Example 2:
i1: 01010 i1: 11111

i2: 10010 i2: 11111

i3: 00010 i3: 11010

i4: 11010 i4: 11111

Genetic Algorithms: Part 3

Convergence

Genetic Algorithms: Part 3

Knapsack Example: Initialization & Termination

� Initialization:

– We all do initialization by random choice of 0 and 1 in

each position of our initial population

� Termination:

– We will run our algorithm until no improvement in the – We will run our algorithm until no improvement in the

fitness of the best number of the population has been

observed for 25 generations

Genetic Algorithms: Part 3

Knapsack Example: Summary

Representation: Binary strings of length n

Recombination: One-point crossover

Recombination probability: 70%

Mutation: Each value inverted with independent Mutation: Each value inverted with independent
probability Pm

Mutation probability Pm: 1/n (Average 1 gene per
recombination mutated)

Parent Selection: Best out of random 2 (Tournament)

Genetic Algorithms: Part 3

Knapsack Example: Summary

Survivor Selection: Replace all (Generational)

Population Size: 500

Number of offspring: 500

Initialization: RandomInitialization: Random

Termination Condition: No improvement in last 25
generations

Note: this only one possible set of operators and
parameters!

References

Genetic Algorithms: Part 3

References

� Eiben and Smith. Introduction to Evolutionary

Computing, Springer-Verlag, New York, 2003.

� J. Dreo A. Petrowski, P. Siarry E. Taillard,

Metaheuristics for Hard Optimization,

Springer-Verlag, 2006. Springer-Verlag, 2006.

The End

