
Metaheuristic Development
Methodology

Fall 2009

Instructor: Dr. Masoud Yaghini

Phases and Steps

Metaheuristics Development Methodology

Phases and Steps

� Phase 1: Understanding Problem

– Step 1: State the Problem

– Step 2: Review of Existing Solution Methods

– Step 3: Define Goals

– Step 4: Select Instances

Metaheuristics Development Methodology

Phases and Steps

� Phase 2: Design of Algorithm

– Step 5: Select Solution Strategy

– Step 6: Define Performance Measures

– Step 7: Select Data Structures

– Step 8: Specify Algorithm

– Step 9: Verify Algorithm

– Step 10: Analyze Algorithm

Metaheuristics Development Methodology

Phases and Steps

� Phase 3: Implementation

– Step 11: Implement Algorithm

– Step 12: Tune Parameters

– Step 13: Analyze the Performance of Algorithm

– Step 14: Report Results

Step 1. State the Problem

Metaheuristics Development Methodology

State the Problem

� This is the first step in designing of algorithm.

� In this step first of all you need to understand
and state the problem completely.

� The problem statements should be very clear.

� Inputs, outputs, and assumptions of problem
should be defined.

� It is better we can provide mathematical model
for clarity.

Step 2. Review of Existing
Solution Methods

Metaheuristics Development Methodology

Review of Existing Solution Methods

� There are some types of problems that are
commonly occurring and to solve such
problems there are typical algorithms which are
already available.

� Hence if the given problem is a common type
of problem, then already existing algorithms
(exact or heuristic) as a solution to that
problem can be used.

� After reviewing such an existing algorithm it is
necessary to find its strength and weakness

– For example, efficiency, memory utilization

Step 3. Define Goals

Metaheuristics Development Methodology

Define Goals

� In the development of a metaheuristic, the
goals must be clearly defined.

� All the experiments, performance analysis
measures, and statistical analysis will depend
on the purpose of designing the metaheuristic.

Metaheuristics Development Methodology

Define Goals

� A contribution may be obtained for different criteria

such as:

– search time,

– quality of solutions,

– robustness in terms of the instances,

– solving large-scale problems,

– parallel scalability in terms of the number of processors,

– easiness of implementation,

– easiness to combine with other algorithms,

– flexibility to solve other problems or optimization models,

– innovation using new nature-inspired paradigms,

– automatic tuning of parameters,

– providing a tight approximation to the problem,

– and so on.

Step 4. Select Instances

Metaheuristics Development Methodology

Select Instances

� Once the goals are defined, the selection of the
input instances to perform the evaluation must
be carefully done.

� The structure associated with the input
instances may influence significantly the
performance of metaheuristics.

� Two types of instances exist:

– Real-life instances

– Constructed instances

Metaheuristics Development Methodology

Real-life instances

� They represent practical instances of the
problem to be solved.

� If available, they constitute a good benchmark
to carry out the performance evaluation of a
metaheuristic.

� It is difficult to obtain real-life instances

– those data are not public

– it is difficult to obtain a large number of real-life

instances for financial reasons.

– Also, collecting some real-life instances may be time

consuming.

Metaheuristics Development Methodology

Constructed Instances

� Many public libraries of “standard” instances
are available on Internet, such as

– OR-Library,

� http://people.brunel.ac.uk/∼mastjjb/jeb/info.html

– MIPLIB,

� http://www.caam.rice.edu/∼bixby/miplib/miplib.html

– TSPLIB for the traveling salesman problem

� http://softlib.rice.edu/softlib/tsplib/

– DIMACS challenges

� http://dimacs.rutgers.edu/Challenges/

Metaheuristics Development Methodology

Constructed Instances

� In addition to some real-life instances, those
libraries contain randomly generated instances.

� A disadvantage of random instances is that
they are often too far from real-life problems to
reflect their structure and important
characteristics.

� The advantage of constructed instances is that
different instances in size and structure may be
generated.

Metaheuristics Development Methodology

Constructed Instances

� Evaluating the performances of a given
metaheuristic using only random instances
may be controversial.

� For instance,

– the structure of uniformly generated random

instances may be completely different from real-life

instances of the problem, and

– then the effectiveness of the metaheuristic will be

completely different in practice.

Metaheuristics Development Methodology

Example

� Let us consider the symmetric TSP problem
with n cities where the distance matrix is
generated as follows:

– each element dij, i # j, of the distance matrix is

independently generated between [0, 20] using a

uniform distribution.

� Any randomly generated tour represents a
good solution.

� For example, for an instance of 5000 cities, it
has been shown that the standard deviation is
equal to 408 (σ√n) and the average cost is 50,
000 (10 · n).

Metaheuristics Development Methodology

Example

� Almost any tour will have a good quality (i.e.,
cost of ±3(408) of 50, 000).

� Hence, evaluating a metaheuristic on such
instances is a pitfall to avoid.

Metaheuristics Development Methodology

Experimental Design

� The set of instances must be diverse in terms
of:

– the size of the instances,

– their difficulties, and

– their structure.

� The instances must be divided into two
subsets:

– the first subset will be used to tune the parameters

of the metaheuristic and

– the second subset to evaluate the performance of

the search algorithms.

Metaheuristics Development Methodology

Experimental Design

� The values of the parameters associated with
the used metaheuristics must be same for all
instances.

� No fine-tuning of the values is done for each
instance unless the use of an automatic off-line
or online initialization strategy

� Indeed, this will cause an overfitting of the
metaheuristic in solving known and specific
instances.

Metaheuristics Development Methodology

Experimental Design

� The parameter values will be excellent to solve the

instances that serve to calibrate the parameters and

very poor to tackle other instances.

� The robustness of the metaheuristic will be affected to

solve unknown instances.

� Otherwise, the time to determine the parameter values

of the metaheuristic to solve a given instance must be

taken into account in the performance evaluation.

� Different parameter values may be adapted to different

structures and sizes of the instances.

Step 5. Select Solution Strategy

Metaheuristics Development Methodology

Select Solution Strategy

� The next important step is to decide whether
the problem is to be solved exactly or
approximately.

� If the problem needs to be solved correctly
then we need exact algorithm.

� Otherwise if the problem is so complex that we
won't get the exact solution then in that
situation we need to choose approximate
algorithms.

Metaheuristics Development Methodology

Select Solution Strategy

� We can choose one of following options:

– an exact algorithm

– a hybrid exact and heuristic algorithm

– a heuristic algorithm

– a metaheuristic algorithm

– a hybrid metaheuristic and heuristic algorithm

– a hybrid exact and metaheuristics algorithm

– a hybrid metaheuristics algorithm

Metaheuristics Development Methodology

Select Solution Strategy

� After selecting algorithmic strategy we should
choose the exact, heuristic, or metaheuristic
method, such as:

– Exact methods:

� Simplex

� Branch and Bound

� Branch and cut

� Column generation

– Metaheuristic:

� Genetic algorithm

� Ant colony optimization

� Tabu search

� Simulated annealing

Step 6. Define the Performance
Measures

Metaheuristics Development Methodology

Define the Performance Measures

� In this step, the performance measures and indicators

to compute are selected.

� In exact optimization methods, the efficiency in terms

of search time is the main indicator to evaluate the

performances of the algorithms as they guarantee the

global optimality of solutions.

� Indicators to evaluate the effectiveness of

metaheuristic search methods:

– Quality of Solutions

– Computational effort

– Robustness

Quality of Solutions

Metaheuristics Development Methodology

Quality of Solutions

� Performance indicators for defining the quality
of solutions in terms of precision are generally
based on measuring the distance or the
percent deviation of the obtained solution to
one of the following solutions:

– Global optimal solution

– Lower/upper bound solution

– Best known solution

– Requirements or actual implemented solution

Metaheuristics Development Methodology

Quality of Solutions

� Performance assessment of the quality of the

solutions. We suppose a minimization problem.

Metaheuristics Development Methodology

Global optimal solution

� The use of global optimal solutions allows a
more absolute performance evaluation of the
different metaheuristics.

� The absolute difference may be defined as

– |f (s) - f (s*)|

– |f (s) - f (s*)| / f (s*)

– where s is the obtained solution and s* is the global

optimal solution.

Metaheuristics Development Methodology

Global optimal solution

� The global optimal solution may be found by an
exact algorithm or may be available using
“constructed” instances where the optimal
solution is known

� Unfortunately, for many complex problems,
global optimal solutions could not be available.

Metaheuristics Development Methodology

Lower/upper bound solution

� For optimization problems where the global
optimal solution is not available, tight lower
bounds (minimization problem) may be
considered as an alternative to global optimal
solutions.

� For some optimization problems, tight lower
bounds are known and easy to obtain.

Metaheuristics Development Methodology

Lower/upper bound solution

� Example: Simple lower bound for the TSP:
– The Held–Karp (HK) 1-tree lower bound for the symmetric TSP

problem is quick and easy to compute.

– Given an instance (V, d) where V is the set of n cities and d

the distance matrix.

– A node v0 ∈ V is selected.

– Let r be the total edge length of a minimum spanning tree over

the n - 1 cities (v ∈ V - {v0}).

– The lower bound t is represented by the r value plus the two

cheapest edges incident on v0.

Metaheuristics Development Methodology

Lower/upper bound solution

� Example: Simple lower bound for the TSP:

– Indeed, any TSP tour must use two edges e and f

incident on the node v0.

– Removing these two edges and the node v0 from

the tour yields a spanning tree of V - {v0}.

– Typically, the lower bound t is 10% below the global

optimal solution.

Metaheuristics Development Methodology

Lower/upper bound solution

� Different relaxation techniques may be used to
find lower bounds such as:

– The classical continuous relaxation and

– The Lagrangian relaxation

� In continuous relaxation for IP problems, the
variables are supposed to be real numbers
instead of integers.

� In Lagrangian relaxation, some constraints
multiplied by Lagrange multipliers are
incorporated into the objective function

Metaheuristics Development Methodology

Lower/upper bound solution

� If the gap between the obtained solution and
the lower bound is small, then the distance of
the obtained solution to the optimal solution is
smaller

Metaheuristics Development Methodology

Best known solution

� For many classical problems, there exist
libraries of standard instances available on the
Web.

� For those instances, the best available solution
is known and is updated each time an
improvement is found.

Metaheuristics Development Methodology

Requirements or actual implemented solution

� For real-life problems, a decision maker may
define a requirement on the quality of the
solution to obtain.

� This solution may be the one that is currently
implemented.

� These solutions may constitute the reference in
terms of quality.

Computational Effort

Metaheuristics Development Methodology

Computational Effort

� The efficiency of a metaheuristic may be
demonstrated using:

– A theoretical analysis

– An empirical analysis

� In theoretical analysis, the worst-case
complexity or average-case complexity of the
algorithm is generally computed.

� In empirical analysis, measures related to the
computation time of the metaheuristic used to
solve a given instance are reported.

Metaheuristics Development Methodology

Empirical Analysis

� The meaning of the computation time must be
clearly specified:

– CPU time

– with or without input/output time

– with or without preprocessing/postprocessing time

� The main drawback of computation time
measure is that it depends on:

– The computer characteristics such as the hardware (e.g.,

processor, memories: RAM and cache, parallel architecture),

– Operating systems,

– Language, and compilers on which the metaheuristic is

executed.

Metaheuristics Development Methodology

Empirical Analysis

� Some indicators that are independent of the
computer system may also be used, such as
the number of objective function evaluations.

– It is an acceptable measure for time-intensive and

constant objective functions.

– Using this metric may be problematic for problems

where the evaluation cost is low compared to the

rest of the metaheuristics or is not time constant in

which it depends on the solution evaluated and

time.

Robustness

Metaheuristics Development Methodology

Robustness

� There is no commonly acceptable definition of
robustness.

� Different alternative definitions exist for
robustness.

� In general, robustness is insensitivity against
small deviations in the input instances (data) or
the parameters of the metaheuristic.

� The lower the variability of the obtained
solutions the better the robustness

Metaheuristics Development Methodology

Robustness

� The metaheuristic should be able to perform
well on a large variety of instances and/or
problems using the same parameters.

� In stochastic algorithms (e.g. genetic
algorithm), the robustness may also be related
to the average/deviation behavior of the
algorithm over different runs of the algorithm
on the same instance.

Step 7. Select Data Structures

Metaheuristics Development Methodology

Select Data Structures

� Data structure and algorithm work together and
these are interdependent.

� Hence choice of proper data structure is
required before designing the actual algorithm.

� The implementation of algorithm (program) is
possible with the help of algorithm and data
structure.

Step 8. Specify Algorithm

Metaheuristics Development Methodology

Specify Algorithm

� There are various ways by which we can
specify an algorithm:

– Using natural language

– Pseudo code

– Flowchart

Metaheuristics Development Methodology

Using Natural Language

� It is very simple to specify an algorithm using
natural language.

� But many times specification of algorithm by
using natural language is not clear.

� For example : Write an algorithm to perform
addition of two numbers:

– Step 1 : Read the first number say a.

– Step 2 : Read the second number say b.

– Step 3 : Add the two numbers and store the result in

a variable c.

– Step 4 : Display the result.

Metaheuristics Development Methodology

Using Natural Language

� Specification of algorithm by using natural
language creates difficulty while actually
implementing it.

� Hence many programmers prefer to have
specification of algorithm by means of pseudo
code.

Metaheuristics Development Methodology

Pseudo Code

� Pseudo code is a combination of natural
language and programming language
constructs.

� A pseudo code is usually more precise than a
natural language.

Metaheuristics Development Methodology

Pseudo Code

� For example: Write an algorithm for
performing addition of two numbers.

Algorithm sum(a, b)

// Problem Description: This algorithm performs

addition of two integers

// Input: two integers a and b

// Output: addition of two integers

C <- a + b

write (c)

Metaheuristics Development Methodology

Flowchart

� Another way of representing the algorithm is by

flowchart.

� Flowchart is a graphical representation of an algorithm.

� Typical symbols used in flowchart are:

Metaheuristics Development Methodology

Flowchart

� For example:

Step 9. Verify Algorithm

Metaheuristics Development Methodology

Verify Algorithm

� Algorithmic verification means checking correctness of

an algorithm.

� After specifying an algorithm we go for checking its

correctness.

� We normally check whether the algorithm gives correct

output in finite amount of time for a valid set of input.

� The proof of correctness of an algorithm can be

complex sometimes.

� But to show that an algorithm works incorrectly we

have to show that at least for one instance of valid

input the algorithm gives wrong result.

Step 10. Analyze Algorithm

Metaheuristics Development Methodology

Analyze Algorithm

� While analyzing an algorithm we should
consider following factors:

– Time complexity (efficiency) of an algorithm

– Space efficiency of an algorithm

– Simplicity of an Algorithm

– Generality of an algorithm

Metaheuristics Development Methodology

Analyze Algorithm

� Time complexity of an algorithm

– means the amount of time taken by an algorithm to

run.

– By computing time complexity we come to know

whether the algorithm is to run slow or fast.

� Space complexity of an algorithm

– means the amount of space (memory) taken by an

algorithm.

– By computing space complexity we can analyze

whether an algorithm requires more or less space.

Metaheuristics Development Methodology

Analyze Algorithm

� Simplicity is of an algorithm

– means generating sequence of instructions which

are easy to understand.

– This is an important characteristic of an algorithm

because simple algorithms can be understood

quickly and one can then write simpler programs for

such algorithms.

– Finding out bugs from algorithm or debugging the

program becomes easy when algorithm is simple.

– Sometimes simpler algorithms arc more efficient

than complex algorithms.

– But it is not always possible that the algorithm is

simple.

Metaheuristics Development Methodology

Analyze Algorithm

� Generality

– Becomes an algorithm in more general way rather

than designing it for particular set of input.

– Hence we should write general algorithms always.

– For example designing an algorithm for finding

greatest common divisor (GCD) of any two numbers

is more appealing than that of particular two values.

– But sometimes it is not at all required to design a

generalized algorithm.

Metaheuristics Development Methodology

Analyze Algorithm of Algorithm

� Analysis of algorithm means checking the
characteristics such as : time complexity,
space complexity, simplicity, generality and
range of input.

� If these factors are not satisfactory then we
must redesign the algorithm.

Step 11. Implement Algorithm

Metaheuristics Development Methodology

Implement Algorithm

� The implementation of an algorithm is done by
suitable programming language.

� For example, if an algorithm consists of objects
and related methods then it will be better to
implement such algorithm using some object
oriented programming language like C++ or
JAVA.

� While writing a program for given algorithm it is
essential to write an optimized code.

Step 12. Tune Parameters

Metaheuristics Development Methodology

Tune Parameters

� Many parameters have to be tuned for any

metaheuristic.

� The parameters may have a great influence on the

efficiency and effectiveness of the search.

� It is not obvious to define a priori which parameter

setting should be used.

� The optimal values for the parameters depend mainly

on:

– the problem

– the instance of the problem to deal with

– the search time that we want to spend in solving

the problem

Metaheuristics Development Methodology

Tune Parameters

� A universally optimal parameter values set for
a given metaheuristic does not exist.

� The parameters are not only numerical values
but may also involve the use of search
components.

� There are two different strategies for parameter
tuning:

– the off-line parameter tuning strategy (or meta-

optimization)

– the online parameter tuning strategy

Metaheuristics Development Methodology

Tune Parameters

� Off-line tuning strategy

– the values of different parameters are fixed before

the execution of the metaheuristic

� Online tuning strategy

– the parameters are controlled and updated

dynamically or adaptively during the execution of

the metaheuristic.

Metaheuristics Development Methodology

Parameter Initialization Strategies

Design of Experiments (DoE)

Metaheuristics Development Methodology

Off-Line Parameter Initialization

� Usually, metaheuristic designers tune one
parameter at a time, and its optimal value is
determined empirically.

� In this case, no interaction between
parameters is studied.

� This sequential optimization strategy (i.e., one-
by-one parameter) do not guarantee to find the
optimal setting even if an exact optimization
setting is performed.

Metaheuristics Development Methodology

Design of Experiments (DoE)

� To overcome this problem, experimental
design is used.

� Before using an experimental design approach,
the following concepts must be defined:

– Factors that represent the parameters to vary in the

experiments.

– Levels that represent the different values of the

parameters, which may be quantitative (e.g.,

mutation probability) or qualitative (e.g.,

neighborhood).

Metaheuristics Development Methodology

Design of Experiments (DoE)

� Let’s consider n factors in which each factor
has k levels, a full factorial design needs nk

experiments.

� Then, the “best” levels are identified for each
factor.

� This approach is its high computational cost
especially when the number of parameters
(factors) and their domain values are large,
that is, a very large number of experiments
must be realized.

Metaheuristics Development Methodology

Design of Experiments (DoE)

� However, a small number of experiments may
be performed by using:

– Latin hypercube designs

– Sequential design

– Fractional design

� Other approaches used in machine learning
community:

– Racing algorithms

Meta-optimization Approach

Metaheuristics Development Methodology

Meta-optimization Approach

� In off-line parameter initialization, the search
for the best tuning of parameters of a
metaheuristic in solving a given problem may
be formulated as an optimization problem.

� This meta-optimization approach may be
performed by any (meta)heuristic, leading to a
meta-metaheuristic (or meta-algorithm)
approach.

� Meta-optimization may be considered a hybrid
scheme in metaheuristic design.

Metaheuristics Development Methodology

Meta-optimization using a meta-metaheuristic

Metaheuristics Development Methodology

Meta-optimization Approach

� This approach is composed of two levels:

– the meta-level

– the base level

� At the meta-level, a metaheuristic operates on
solutions (or populations) representing the
parameters of the metaheuristic to optimize.

� For instance, it has been used to optimize:

– Simulated annealing by GA

– Ant colonies by GA

– A GA by a GA

Metaheuristics Development Methodology

Meta-optimization Approach

� A solution x at the meta-level will represent all
the parameters the user wants to optimize:

– Parameter values

� such as the size of the tabu list for tabu search, the cooling

schedule in simulated annealing, the mutation and

crossover probabilities for an evolutionary algorithm

– Search operators

� Such as the type of selection strategy in evolutionary

algorithms, the type of neighborhood in local search, and

so on.

Metaheuristics Development Methodology

Meta-optimization Approach

� At the meta-level, the objective function fm
associated with a solution x is generally the
best found solution (or any performance
indicator) by the metaheuristic using the
parameters specified by the solution x.

� Hence, to each solution x of the meta-level will
correspond an independent metaheuristic in
the base level.

� The metaheuristic of the base level operates
on solutions (or populations) that encode
solutions of the original optimization problem.

Metaheuristics Development Methodology

Meta-optimization Approach

� The objective function fb used by the
metaheuristic of the base level is associated
with the target problem.

� Then, the following formula holds:

– where Meta(x) represents the best solution returned

by the metaheuristic using the parameters x.

Online Parameter Initialization

Metaheuristics Development Methodology

Online Parameter Initialization

� The drawback of the off-line approaches is
their high computational cost, particularly if this
approach is used for each input instance of the
problem.

� Indeed, the optimal values of the parameters
depend on the problem at hand and even on
the various instances to solve.

� Then, to improve the effectiveness and the
robustness of off-line approaches, they must
be applied to any instance (or class of
instances) of a given problem.

Metaheuristics Development Methodology

Online Parameter Initialization

� Another important drawback of off-line
strategies is that the effectiveness of a
parameter setting may change during the
search; that is, at different moments of the
search different optimal values are associated
with a given parameter.

� Hence, online approaches that change the
parameter values during the search must be
designed.

Metaheuristics Development Methodology

Online Parameter Initialization

� Online approaches may be classified as
follows:

– Dynamic update

� In a dynamic update, the change of the parameter value is

performed without taking into account the search progress.

� A random or deterministic update of the parameter values

is performed.

– Adaptive update

� The adaptive approach changes the values according to

the search progress.

� This is performed using the memory of the search.

Metaheuristics Development Methodology

Online Parameter Initialization

� A subclass of adaptive, referred to as self-
adaptive approach, consists in “evolving” the
parameters during the search.

� Hence, the parameters are encoded into the
representation and are subject to change as
the solutions of the problem.

Step 13. Analyze the Performance
of Algorithm

Metaheuristics Development Methodology

Analyze the Performance of Algorithm

� After parameters tuning we must obtain the
experimental results for different indicators

� Methods from statistical analysis can be used
to conduct the performance assessment of the
designed metaheuristics.

� For nondeterministic (or stochastic) algorithms,
many trials (at least 10, more than 100 if
possible) must be carried out to derive
significant statistical results.

Metaheuristics Development Methodology

Analyze the Performance of Algorithm

� From this set of trials, many measures may be
computed:

– mean,

– median,

– minimum,

– maximum,

– standard deviation,

– the success rate that the reference solution (e.g.,

global optimum, best known, given goal) has been

attained, and so on.

Metaheuristics Development Methodology

Analyze the Performance of Algorithm

� The success rate represents the number of
successful runs over the number of trials.

Step 14. Report Result

Metaheuristics Development Methodology

Report Result

� The interpretation of the results must be
explicit and driven using the defined goals and
considered performance measures.

� In general, it is not sufficient to present the
large amount of data results using tables.

� Some visualization tools to analyze the data
are welcome to complement the numerical
results.

Metaheuristics Development Methodology

Report Result

� Graphical tools allow a better understanding of
the performance assessment of the obtained
results, such as

– Interaction plots

– Scatter plots

– Box plots

Metaheuristics Development Methodology

Report Result

� Interaction plots

– represent the interaction between different factors

and their effect on the obtained response

(performance measure)

� Scatter plots

– to illustrate the compromise between various

performance indicators.

– For instance, the plots display quality of solutions

versus time, or time versus robustness, or

robustness versus quality

Metaheuristics Development Methodology

Report Result

� Example: Interaction plot: Interaction plot analyzes the effect of

two factors (parameters, e.g., mutation probability, population size

in evolutionary algorithms) on the obtained results (e.g., solution

quality, time).

Metaheuristics Development Methodology

Report Result

� Example: Scatter plot: The scatter plot analyzes the trade-off

between the different performance indicators (e.g., quality of

solutions, search time, robustness).

Metaheuristics Development Methodology

Report Result

� Box plots

– illustrate the distribution of the results through their

five-number summaries:

� the smallest value,

� lower quartile (Q1),

� median (Q2),

� upper quartile (Q3), and

� largest value

– They are useful in detecting outliers and indicating

the dispersion and the skewness of the output data

without any assumptions on the statistical

distribution of the data.

Metaheuristics Development Methodology

Report Result

� Example: Box plot

References

Metaheuristics Development Methodology

References

� El-Ghazali Talbi, Metaheuristics : From Design to

Implementation, John Wiley & Sons, 2009.

The End

