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What Is Simulated Annealing?

� Simulated Annealing (SA)

– applied to solve optimization problems

– is a stochastic algorithm

– escaping from local optima by allowing worsening moves

– is a memoryless algorithm in the sense that the algorithm – is a memoryless algorithm in the sense that the algorithm 

does not use any information gathered during the search

– is applied for both combinatorial and continuous

optimization problems

– is simple and easy to implement.

– motivated by the physical annealing process

– Mathematical proven to converge to global optimum
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SA vs Greedy Algorithms: Ball on terrain example 
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History

� Numerical simulation of annealing, Metropolis et al. 

1953.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. 

Equation of state calculations by fast computing machines. Journal of Equation of state calculations by fast computing machines. Journal of 

Chemical Physics, 21:1087–1092, 1953.
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History

� SA for combinatorial problems

– Kirkpatrick et. al, 1986

– Cerny, 1985

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated 

annealing. Science, 220(4598):671–680, 1983.

V. Cerny, Thermodynamical approach to the traveling salesman problem : an 

efficient simulation algorithm. J. of Optimization Theory and Applications, 

45(1):41–51, 1985.
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History

� Originally, the use of simulated annealing in 

combinatorial optimization

� In the 1980s, SA had a major impact on the field of 

heuristic search for its simplicity and efficiency in 

solving combinatorial optimization problems. solving combinatorial optimization problems. 

� Then, it has been extended to deal with continuous 

optimization problems

� SA was inspired by an analogy between the 

physical annealing process of solids and the 

problem of solving large combinatorial optimization 

problems.
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Applications

� Basic problems

– Traveling Salesman Problem

– Graph partitioning

– Matching prob.

– Quadratic Assignment– Quadratic Assignment

– Linear Arrangement 

– Scheduling 

– ….
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Applications

� Engineering problem

– VLSI: Placement, routing…

– Facilities layout

– Image processing

– Code design– Code design

– Biology

– Physics

– ….



Real Annealing and Simulated Annealing
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Real Annealing Technique

� Annealing Technique is known as a thermal 

process for obtaining low-energy state of a solid in 

a heat bath. 

� The process consists of the following two steps:

– Increase the temperature of the heat bath to a maximum – Increase the temperature of the heat bath to a maximum 

value at which the solid melts.

– Decrease carefully the temperature of the heat bath until 

the particles arrange themselves in the ground state of 

the solid.
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Real Annealing Technique

� In the liquid phase all particles arrange themselves 

randomly, whereas in the ground state of the solid, 

the particles are arranged in a highly structured 

lattice, for which the corresponding energy is 

minimal.minimal.

� The ground state of the solid is obtained only if:

– the maximum value of the temperature is sufficiently 

high and 

– the cooling is done sufficiently slow. 
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Real Annealing Technique

� If the initial temperature is not sufficiently high or a 

fast cooling is applied, metastable states 

(imperfections) are obtained. 

� The process that leads to metastable states is called 

quenchingquenching

� Strong solid are grown from careful and slow 

cooling. 

� If the lowering of the temperature is done 

sufficiently slow, the solid can reach thermal 

equilibrium at each temperature.



Simulated Annealing: Part 1 

Real Annealing and Simulated Annealing

� The analogy between the physical system and the 

optimization problem. 

Physical System Optimization Problem

System state Solution

Molecular positions Decision variablesMolecular positions Decision variables

Energy Objective function

Minimizing energy Minimizing cost

Ground state Global optimal solution

Metastable state Local optimum

Quenching Local search

Temperature Control parameter T

Real annealing Simulated annealing
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Real Annealing and Simulated Annealing

� The objective function of the problem is analogous 

to the energy state of the system. 

� A solution of the optimization problem corresponds 

to a system state.

� The decision variables associated with a solution of � The decision variables associated with a solution of 

the problem are analogous to the molecular 

positions. 

� The global optimum corresponds to the ground state 

of the system. 

� Finding a local minimum implies that a metastable

state has been reached.
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Metropolis Algorithm

� In 1958 Metropolis et al. introduced a simple 

algorithm for simulating the evolution of a solid in a 

heat bath to thermal equilibrium. 

� Their algorithm is based on Monte Carlo 

techniques, and generates a sequence of states of the techniques, and generates a sequence of states of the 

solid in the following way. 

� Given a current state i of the solid with energy Ei, a 

subsequent state j is generated by applying a 

perturbation mechanism that transforms the current 

state into a next state by a small distortion, for 

instance, by a displacement of a single particle. 
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Metropolis Algorithm

� The energy of the next state is Ej . 

� If the energy difference, Ej − Ei , is less than or 

equal to 0, the state j is accepted as the current state. 

� If the energy difference is greater than 0, then state j 

is accepted with a probability given byis accepted with a probability given by

– where T denotes the temperature of the heat bath and 

– kB a physical constant known as the Boltzmann constant. 
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Metropolis Algorithm

� The acceptance rule described above is known as 

the Metropolis criterion (Metropolis rule) and the 

algorithm that goes with it is known as the 

Metropolis algorithm.

� In the Metropolis algorithm thermal equilibrium is � In the Metropolis algorithm thermal equilibrium is 

achieved by generating a large number of transitions 

at a given temperature value.



Template of SA
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Template of SA

� Using Metropolis algorithm to simulate the 

evolution of a physical system towards its 

thermodynamic balance at a given temperature:

– On the basis of a given, 

– the system is subjected to an elementary, – the system is subjected to an elementary, 

– if this modification causes a decrease in the objective 

function of the system, it is accepted; 

– if it causes an increase ∆E of the objective function, it is 

also accepted, but with a probability
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Template of SA

� By repeatedly observing this Metropolis rule of 

acceptance, a sequence of configurations is 

generated

� With this formalism in place, it is possible to show 

that, when the chain is of infinite length (in practical that, when the chain is of infinite length (in practical 

consideration, of “sufficient”length. . . ), the system 

can reach (in practical consideration, can approach) 

thermodynamic balance (Equilibrium State) at 

the temperature considered
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Template of SA

� At high temperature,              is close to 1, 

– therefore the majority of the moves are accepted and the 

algorithm becomes equivalent to a simple random walk in 

the configuration space . 

� At low temperature,              is close to 0, � At low temperature,              is close to 0, 

– therefore the majority of the moves increasing energy is 

refused. 

� At an intermediate temperature, 

– the algorithm intermittently authorizes the 

transformations that degrade the objective function
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Template of SA

� SA can be viewed as a sequence of Metropolis 

algorithms, evaluated at decreasing values of the 

temperature.
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Template of SA

� From an initial solution, SA proceeds in several 

iterations. 

� At each iteration, a random neighbor is generated. 

� Moves that improve the cost function are always 

accepted. accepted. 

� Otherwise, the neighbor is selected with a given 

probability that depends on the current temperature and 

the amount of degradation DE of the objective function. 

� DE represents the difference in the objective value 

(energy) between the current solution and the generated 

neighboring solution. 
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Template of SA

� The higher the temperature, the more significant the 

probability of accepting a worst move. 

� At a given temperature, the lower the increase of the 

objective function, the more significant the 

probability of accepting the move. probability of accepting the move. 
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Template of SA

� As the algorithm progresses, the probability that 

such moves are accepted decreases. 
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Template of SA

� The acceptance probability function, in general, the 

Boltzmann distribution:

� It uses a control parameter, called temperature, to determine It uses a control parameter, called temperature, to determine 

the probability of accepting nonimproving solutions. 

� At a particular level of temperature, many trials are explored. 

� Once an equilibrium state is reached, the temperature is 

gradually decreased according to a cooling schedule such 

that few nonimproving solutions are accepted at the end of 

the search.
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Template of SA
Initialize Solution and 

Temperature

Start

Generate a Random 

Neighbor

Accept Neighbor Solution

Better solution?
Should we 

accept?

Y

N

Y

N

Accept Neighbor Solution

End

Update Temperature

Cooling 

Enough?

Y

N

Equilibrium 

Condition?

N

Y
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Template of SA
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Inhomogeneous vs. Homogeneous Algorithm

� SA has two variants:

– Homogeneous variant

� Previous algorithm is the homogeneous variant

� T is kept constant in the inner loop and is only decreased in the 

outer loop

Inhomogeneous variant– Inhomogeneous variant

� There is only one loop

� T is decreased each time in the loop, but only very slightly
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Inhomogeneous variant
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Inhomogeneous variant



Simulated Annealing: Part 1 

Cooling Schedule

� The cooling schedule defines for each step of the 

algorithm i the temperature Ti.

� It has a great impact on the success of the SA 

optimization algorithm. 

� The parameters to consider in defining a cooling � The parameters to consider in defining a cooling 

schedule are the starting temperature, the 

equilibrium state, a cooling function, and The final 

temperature that defines the stopping criteria
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Template of SA

� Main components of SA:

– Acceptance Function

– Initial Temperature

– Equilibrium State

– Cooling Function– Cooling Function

– Stopping Condition



A Simple Example
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A Simple Example

� Let us maximize the continuous function 

f (x) = x3 - 60x2 + 900x + 100. 

� A solution x is represented as a string of 5 bits. 

� The neighborhood consists in flipping randomly a bit. 

� The global maximum of this function is: � The global maximum of this function is: 

01010 (x = 10, f (x) = 4100)

� The initial solution is 10011 (x = 19, f (x) = 2399) 

� Testing two sceneries:

– First scenario: initial temperature T0 equal to 500.

– Second scenario: initial temperature T0 equal to 100. 

� Cooling: T = 0.9 . T
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A Simple Example

� In addition to the current solution, the best solution 

found since the beginning of the search is stored. 

� Few parameters control the progress of the search, 

which are:

– The temperature – The temperature 

– The number of iterations performed at each temperature
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A Simple Example

� First Scenario T = 500 and Initial Solution (10011)
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A Simple Example

� Second Scenario: T = 100 and Initial Solution (10011). 

� When Temperature is not High Enough, Algorithm Gets 

Stuck
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Acceptance Function

� The system can escape from local optima due to the 

probabilistic acceptance of a nonimproving

neighbor.

� The probability of accepting a nonimproving

neighbor is proportional to the temperature T and neighbor is proportional to the temperature T and 

inversely proportional to the change of the objective 

function DE.
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Acceptance Function

� The acceptance probability of a nonimproving move 

is:

where E is the change in the evaluation function, 

ReTEP T

E

>=∆

∆−

),(

– where E is the change in the evaluation function, 

– T is the current temperature, and

– R is a uniform random number between 0 and 1.
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Acceptance Function

� At high temperatures, 

– the probability of accepting worse moves is high. 

– If T = ∞, all moves are accepted, which corresponds to a 

random local walk in the landscape.

� At low temperatures, � At low temperatures, 

– the probability of accepting worse moves decreases. 

– If T = 0, no worse moves are accepted and the search is 

equivalent to local search (i.e., hill climbing). 

� Moreover, the probability of accepting a large 

deterioration in solution quality decreases 

exponentially toward 0 according to the Boltzmann 

distribution.



Simulated Annealing: Part 1 

To accept or not to accept?

Change Temp exp(-DDDDE/T) Change Temp exp(-DDDDE/T)

0.2 0.95 0.810157735 0.2 0.1 0.135335283

0.4 0.95 0.656355555 0.4 0.1 0.0183156390.4 0.95 0.656355555 0.4 0.1 0.018315639

0.6 0.95 0.531751530 0.6 0.1 0.002478752

0.8 0.95 0.430802615 0.8 0.1 0.000335463



Initial Temperature



Simulated Annealing: Part 1 

Initial Temperature

� If the starting temperature is very high, 

– the search will be a random local search for a period of 

time 

– accepting all neighbors during the initial phase of the 

algorithm.algorithm.

– The main drawback of this strategy is its high 

computational cost.

� If the initial temperature is very low, 

– the search will be a local search algorithm. 

� Temperature must be high enough to allow moves 

to almost neighborhood state.

� Problem is finding a suitable starting temperature
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Initial Temperature

� Acceptance deviation

– The starting temperature is computed using preliminary 

experimentations by:

kσ

– where σ represents the standard deviation of difference – where σ represents the standard deviation of difference 

between values of objective functions and 

– k = −3/ln(p) with the acceptance probability of p, which 

is greater than 3σ
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Initial Temperature

� Tuning for initial temperature

– Start high, reduce quickly until about 60% of worse 

moves are accepted. 

– Use this as the starting temperature



Equilibrium State
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Equilibrium State

� Once an equilibrium state is reached, the 

temperature is decreased.

� To reach an equilibrium state at each temperature, a 

number of sufficient transitions (moves) must be 

applied.applied.

� The number of iterations must be set according to:

– The size of the problem instance and 

– Particularly proportional to the neighborhood size |N(s)|
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Equilibrium State

� The strategies that can be used to determine the 

number of transitions visited:

– Static strategy

– Adaptive strategy
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Equilibrium State

� Static strategy

– The number of transitions is determined before the search 

starts. 

– For instance, a given proportion y of the neighborhood 

N(s) is explored.N(s) is explored.

– Hence, the number of generated neighbors from a 

solution s is y · |N(s)|.

– The more significant the ratio y, the higher the 

computational cost and the better the results.
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Equilibrium State

� Adaptive strategy

– The number of generated neighbors will depend on the 

characteristics of the search. 

– One adaptive approach is an improving neighbor solution 

is generated. is generated. 

– This feature may result in the reduction of the 

computational time without compromising the quality of 

the obtained solutions

– Another approach is achieving a predetermined number 

of iterations without improvement of the best found 

solution in the inner loop with the same temperature
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Cooling Schedule

� In the SA algorithm, the temperature is decreased 

gradually such that Ti > 0, ∀i

� There is always a compromise between the quality 

of the obtained solutions and the speed of the 

cooling schedule.cooling schedule.

� If the temperature is decreased slowly, better 

solutions are obtained but with a more significant 

computation time.
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Cooling Schedule

� The temperature T can be updated in different ways:

– Static Strategy

� Linear

– Dynamic Strategy

� GeometricGeometric

� Logarithmic

– Adaptive Strategy 
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Cooling Schedule

� Linear

– In the trivial linear schedule, the temperature T is updated 

as T = T − β, where β is a specified constant value. 

– Hence, we have

Ti = T0 − i × βTi = T0 − i × β

– where Ti represents the temperature at iteration i.

– β is a specified constant value

– T0 is the initial temperature
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Cooling Schedule

� Geometric

– In the geometric schedule, the temperature is updated 

using the formula

Ti+1 = α.Ti

– where α ∈]0, 1[. – where α ∈]0, 1[. 

– It is the most popular cooling function. 

– Experience has shown that α should be between 0.5 and 

0.99.
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Cooling Schedule

� Logarithmic

– The following formula is used:

)10log(

0

+
=

i

T
T

i

– This schedule is too slow to be applied in practice but has 

the property of the convergence proof to a global 

optimum.

)10log( +i
i
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Cooling Schedule

� Adaptive Strategy 

– Most of the cooling schedules are static or dynamic in the 

sense that the cooling schedule is defined completely a 

priori. 

– In this case, the cooling schedule is “blind” to the In this case, the cooling schedule is “blind” to the 

characteristics of the search landscape. 

– In an adaptive cooling schedule, the decreasing rate is 

depends on some information obtained during the search.
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Stopping Condition

� Concerning the stopping condition, theory suggests 

a final temperature equal to 0. 

� In practice, one can stop the search when the 

probability of accepting a move is negligible. 
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Stopping Condition

� The following stopping criteria may be used:

1. Reaching a final temperature TF is the most popular 

stopping criteria. 

o This temperature must be low (e.g., Tmin = 0.01).

2. Achieving a predetermined number for successive 2. Achieving a predetermined number for successive 

temperature values no improvement in solution quality

3. After a fixed amount of CPU time

4. When the objective reaches a pre-specified threshold 

value
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Handling Constraints

� Constraints cannot handled implicitly

– Penalty function approach should be used

� Constraints

Hard Constraints: these constraints cannot be violated – Hard Constraints: these constraints cannot be violated 

in a feasible solution

– Soft Constraints: these constraints should, ideally, not 

be violated but, if they are, the solution is still feasible
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Handling Constraints

� Hard constraints are given a large weighting. 

– The solutions which violate those constraints have a high 

cost function

� Soft constraints are weighted depending on their 

importanceimportance

� Weightings can be dynamically changed as the 

algorithm progresses. 

– This allows hard constraints to be accepted at the start of 

the algorithm but rejected later
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The End


