Simulated Annealing Part 2: Simulated Annealing for TSP

Fall 2009
Instructor: Dr. Masoud Yaghini

Solution Representation

- A solution can be represented by a vector indicating the order the cities are visited
- Example:

1	5	3	4	2	6	7	8

- Numbers in the solution vector are interpreted as cities and not as positions in the solution vector

Initial Solutions

- A good feasible, yet not-optimal, solution to the TSP can be found quickly using a greedy approach (the nearest-neighbor heuristic).
- Starting with the first node in the tour, find the nearest node.
- Each time find the nearest unvisited node from the current node until all the nodes are visited.

Simulated Annealing: Part 1

Neighborhood Structure

- Neighbor solution can be found based on three operations:
- Translation (insertion)
- Switching
- Inversion

1	2	3	4	5	6	7	8

Neighborhood Structure

- Translation (Insertion)
- Pick two city at random
- Move the second to follow the first, shifting the rest along to make room

1	2	3	4	5	6	7	8

Neighborhood Structure

- Switching
- Pick two cities at random and swap their positions
- In this method 4 links broken

1	2	3	4	5	6	7	8

Neighborhood Structure

- Inversion
- Pick two cities at random and then invert the substring between them.
- Two links broken

1	2	3	4	5	6	7	8

Neighborhood Structure

- Randomly chose inversion, insertion, or switching at each iteration
- Tuning required to choose "good" probabilities of selecting these operators

Cooling Schedule

- Geometric schedule

$$
\mathrm{T}_{\mathrm{i}+1}=\alpha \cdot \mathrm{T}_{\mathrm{i}}
$$

- Tuning required to choose α

Simulated Annealing: Part 1

Stopping Condition

- There is no improvement in the solution for last prespecified number of successive temperature.

The End

