5. Simulated Annealing 5.2 Advanced Concepts

Fall 2010 Instructor: Dr. Masoud Yaghini

Outline

- Acceptance Function
- Initial Temperature
- Equilibrium State
- Cooling Schedule
- Stopping Condition
- Handling Constraints
- An Exercise
- References

Acceptance Function

Acceptance Function

- SA can escape from local optima due to the probabilistic acceptance of a nonimproving neighbor.
- The probability of accepting is dependent of:
 - The temperature T
 - The change of the objective function ΔE

Acceptance Function

• The acceptance probability of a nonimproving move is:

$$P(\Delta E,T) = e^{\frac{-\Delta E}{T}} > R$$

- where E is the change in the evaluation function,
- T is the current temperature, and
- R is a uniform random number between 0 and 1.

To accept or not to accept?

Change	Temperature	$exp(-\Delta E/T)$		
0.2	0.95	0.8101		
0.4	0.95	0.6563		
0.6	0.95	0.5317		
0.8	0.95	0.4308		
0.2	0.10	0.1353		
0.4	0.10	0.0183		
0.6	0.10	0.0024		
0.8	0.10	0.0003		

Acceptance Function

- At high temperatures,
 - the probability of accepting worse moves is high.
 - If $T = \infty$, all moves are accepted
 - It corresponds to a random local walk in the landscape.
- At low temperatures,
 - The probability of accepting worse moves decreases.
 - If T = 0, no worse moves are accepted
 - The search is equivalent to local search.
- Moreover, the probability of accepting a large deterioration in solution quality decreases exponentially toward 0.

Initial Temperature

Initial Temperature

- If the starting temperature is very high,
 - the search will be a random local search for a period of time
 - accepting all neighbors during the initial phase of the algorithm.
 - The main drawback of this strategy is its high computational cost.
- If the initial temperature is very low,
 - the search will be a local search algorithm.
- Temperature must be high enough to allow moves to almost neighborhood state.
- Problem is finding a suitable starting temperature

Initial Temperature

- Finding a suitable starting temperature methods:
 - Acceptance deviation method
 - Tuning for initial temperature method

Initial Temperature

• Acceptance deviation method

- The starting temperature is computed using preliminary experimentations by: $k\sigma$
- where
 - σ represents the standard deviation of difference between values of objective functions and
 - $k = -3/\ln(p)$ with the acceptance probability of p, which is greater than 3σ

Initial Temperature

• Tuning for initial temperature method:

- Start high, reduce quickly until about 60% of worse moves are accepted.
- Use this as the starting temperature

Equilibrium State

Equilibrium State

- Once an equilibrium state is reached, the temperature is decreased.
- To reach an equilibrium state at each temperature, a number of sufficient transitions (moves) must be applied.
- The number of iterations must be set according to:
 - The size of the problem instance and
 - Particularly proportional to the neighborhood size |N(s)|

Equilibrium State

- The strategies that can be used to determine the number of transitions visited:
 - Static strategy
 - Adaptive strategy

Equilibrium State

• Static strategy

- The number of transitions is determined before the search starts.
- For instance, a given proportion y of the neighborhood
 N(s) is explored.
- Hence, the number of generated neighbors from a solution s is $y \cdot |N(s)|$.
- The more significant the ratio y, the higher the computational cost and the better the results.

Equilibrium State

• Adaptive strategy

- The number of generated neighbors will depend on the characteristics of the search.
- One adaptive approach is an improving neighbor solution is generated.
- This feature may result in the reduction of the computational time without compromising the quality of the obtained solutions
- Another approach is achieving a predetermined number of iterations without improvement of the best found solution in the inner loop with the same temperature

Cooling Schedule

Cooling Schedule

- In the SA algorithm, the temperature is decreased gradually such that $T_i > 0$, $\forall i$
- There is always a compromise between the quality of the obtained solutions and the speed of the cooling schedule.
- If the temperature is decreased slowly, better solutions are obtained but with a more significant computation time.

Cooling Schedule

- The temperature can be updated in different ways:
 - Static Strategy
 - Linear
 - Dynamic Strategy
 - Geometric
 - Logarithmic
 - Adaptive Strategy

Cooling Schedule

• Linear

- In the trivial linear schedule, the temperature T is updated as $T = T - \beta$, where β is a specified constant value.
- Hence, we have

 $T_i = T_0 - i \times \beta$

- where T_i represents the temperature at iteration i.
- $-\beta$ is a specified constant value
- T₀ is the initial temperature

Cooling Schedule

• Geometric

- In the geometric schedule, the temperature is updated using the formula

 $T_{i+1} = \alpha . T_i$

- where $\alpha \in [0, 1[.$
- It is the most popular cooling function.
- Experience has shown that α should be between 0.5 and 0.99.

Cooling Schedule

- Logarithmic
 - The following formula is used:

$$T_i = \frac{T_0}{\log(i+10)}$$

 This schedule is too slow to be applied in practice but has the property of the convergence proof to a global optimum.

Cooling Schedule

• Adaptive Strategy

- Most of the cooling schedules are static or dynamic in the sense that the cooling schedule is defined completely a priori.
- In this case, the cooling schedule is "blind" to the characteristics of the search landscape.
- In an adaptive cooling schedule, the decreasing rate is depends on some information obtained during the search.

Stopping Condition

Stopping Condition

- Concerning the stopping condition, theory suggests a final temperature equal to 0.
- In practice, one can stop the search when the probability of accepting a move is negligible.

Stopping Condition

- The following stopping criteria may be used:
 - 1. Reaching a final temperature T_F is the most popular stopping criteria.
 - This temperature must be low (e.g., $T_{min} = 0.01$).
 - 2. Achieving a predetermined number for successive temperature values no improvement in solution quality
 - 3. After a fixed amount of CPU time
 - 4. When the objective reaches a pre-specified threshold value

Handling Constraints

Handling Constraints

- Constraints cannot handled implicitly
 - Penalty function approach should be used
- Constraints
 - Hard Constraints: these constraints cannot be violated in a feasible solution
 - **Soft Constraints**: these constraints should, ideally, not be violated but, if they are, the solution is still feasible

Handling Constraints

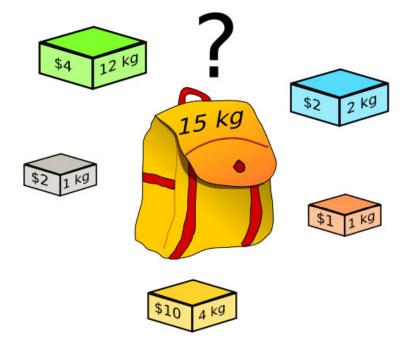
- Hard constraints are given a large weighting.
 - The solutions which violate those constraints have a high cost function
- Soft constraints are weighted depending on their importance
- Weightings can be dynamically changed as the algorithm progresses.
 - This allows hard constraints to be accepted at the start of the algorithm but rejected later

An Exercise

The Knapsack problem

- There are *n* items:
 - Each item *i* has a weight w_i
 - Each item *i* has a value v_i
- The knapsack has a limited capacity of W units.
- We can take one of each item at most

$$\begin{array}{ll} \max \sum_{i} v_{i} \ast x_{i} & i = 1, 2, ..., n\\ subject to & \sum_{i} w_{i} \ast x_{i} \leq W\\ & x_{i} \in \{0, 1\} \end{array}$$



The Knapsack problem

- Example:
 - Item: 1 2 3 4 5 6 7
 - Benefit: 5 8 3 2 7 9 4
 - Weight: 7 8 4 10 4 6 4
- Knapsack holds a maximum of 22 pounds
- Fill it to get the maximum benefit
- The problem description:

- Maximize
$$\sum_{i}^{V_{i}} V_{i}$$

- While $\sum_{i}^{V_{i}} W_{i} \leq W$

Solution 1

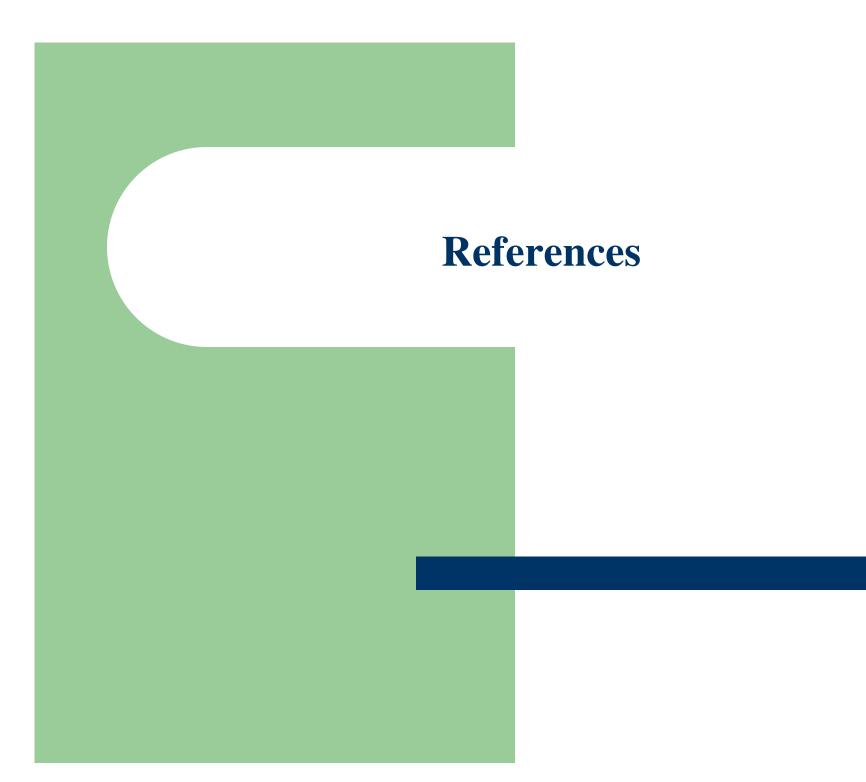
Item	1	2	3	4	5	6	7
Solution	1	1	0	0	1	0	0
Benefit	5	8	3	2	7	9	4
Weight	7	8	4	10	4	6	4

- Objective: 5 + 8 + 7 = 20
- Weight: 7 + 8 + 4 = 19 <= 22

Solution 2 overweighted

Item	1	2	3	4	5	6	7
Solution	0	1	0	1	0	1	0
Benefit	5	8	3	2	7	9	4
Weight	7	8	4	10	4	6	4

• Weight:
$$8 + 10 + 6 = 24 > 22$$



References

- El-Ghazali Talbi, Metaheuristics : From Design to Implementation, John Wiley & Sons, 2009.
- J. Dreo A. Petrowski, P. Siarry E. Taillard, Metaheuristics for Hard Optimization, Springer-Verlag, 2006.

The End