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Representation of Individuals

� Depends on the problem

� The most used encodings:

– Binary representation

– Integer representation

– Real-valued representation– Real-valued representation

– Permutations representation
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Binary Representations

� Simplest and most common

� Chromosome: string of bits

– genes: 0 / 1

� Example: binary representation of an integer

3: 00011

15: 01111

16: 10000
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Binary Representation

� For those problem concerning Boolean
decision variables, the genotype-

phenotype mapping is natural 

– Example: knapsack problem

� Many optimization problems involve 

integer or real numbers and bit string can 

be used to encode these numbers
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Mapping Integer Values on Bit Strings

� Integer values can be also binary coded:
– x = 5 → 00101
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Mapping real values on bit strings

� Real values can be also binary coded

� z ∈ [x, y] ⊆⊆⊆⊆ ℜ represented by {a1,…,aL} ∈ {0,1}L

� [x, y] → {0,1}L must be invertible (one phenotype 

per genotype)

Γ →� Γ: {0,1}L → [x, y] defines the representation 

– Only 2L values out of infinite are represented

– L determines possible maximum precision of solution

– High precision � long chromosomes (slow evolution)
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Mapping real values on bit strings

� Example:
– z ∈ [1, 10]

– We use L = 8 bits to represent real values in the 
domain [1, 10] , i.e., we use 256 numbers 

1 → 00000000 (0)

10 → 11111111 (255)10 → 11111111 (255)

– Convert 00111100, to real value:
1 + ((10-1) / (256-1)) * [(0 * 20) + (0 * 21) + (1 * 22) + (1 * 23) + (1 * 

24) + (1 * 25) + (0 * 26) + (0 * 27)] = 3.12

– Convert n = 3.14 to bit string:
n = 3.14 → (3.14-1)*255/(10-1) = 60 → 00111100

0011 1100 → 3.12 (better precision requires more bits)
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Binary Representations

� Hamming distance:

– Number of bits that have to be changed to map one 

string into another one

– E.g. 000 and 001 � distance = 1  

� Problem: Hamming distance between � Problem: Hamming distance between 

consecutive integers may be > 1 

� example: 5 bit binary representation

14: 01110 15: 01111 16: 10000

– Probability of changing 15 into 16 by independent bit 

flips (mutation) is not same as changing it into 14! 
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Binary encoding problem

� Remember: small changes in genotype should 

cause small changes in phenotype

� Gray coding solves problem.
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Binary Representation

• Binary coding of 0-7 :

0102

0011

0000 • Hamming distance, e.g.:

– 000 (0) and 001 (1)

1106

1117

1015

1004

0113

0102 – 000 (0) and 001 (1)

• Distance = 1 (optimal)

– 011 (3) and 100 (4)

• Distance = 3 (max possible)
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Binary Representation

• Gray coding of 0-7:

• Gray coding is a representation 

that ensures that consecutive 

integers always have Hamming 

distance one.
0103

0112

0011

0000

• Gray coding is a mapping that 

means that small changes in the 

genotype cause small changes in 

the phenotype (unlike binary 

coding).

1016

1007

1115

1104
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Binary Representation

� Nowadays it is generally accepted that it is 

better to encode numerical variables directly

as:

– Integers

– Floating point variables
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Integer representations

� Some problems naturally have integer 
variables

– e.g. for optimization of a function with integer 

variables

� Values may be� Values may be

– unrestricted (all integers)

– restricted to a finite set

� e.g. {0,1,2,3} 

� e.g. {North,East,South,West}
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Integer representations

� Any natural relations between possible 
values?

– obvious for ordinal attributes
� 2 is more like 3 than it is 389 

� small < medium < large� small < medium < large

� hot > mild > cool

– maybe no natural ordering for cardinal 
attributes

� e.g. set of compass points

� e.g. employee ID
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Real-valued Representation

� Many problems occur as real valued problems, 

e.g. continuous parameter optimization

– Example: a chromosome can be a pair

(x, y)

� Vector of real values� Vector of real values

– floating point numbers

� Genotype for solution becomes the vector 
<x1,x2,…,xk> with xi∈ℜ
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Permutation Representations

� Deciding on sequence of events

– most natural representation is permutation of a set 

of integers

� In ordinary GA numbers may occur more than 

once on chromosomeonce on chromosome

– invalid permutations!

� New variation operators needed 
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Permutation Representations

� Two classes of problems

– based on order of events

� e.g. scheduling of jobs

– Job-Shop Scheduling Problem

– based on adjacenciesbased on adjacencies

� e.g. Travelling Salesperson Problem (TSP)

– finding a complete tour of minimal length between n 
cities, visiting each city only once
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Permutation Representations

� Two ways to encode a permutation

– i th element represents event that happens in that 

location in a sequence

– value of i th element denotes position in sequence 

in which i th event occursin which i th event occurs

� Example (TSP): 4 cities A,B,C,D and 

permutation [3,1, 2, 4] denotes the tours:

– first encoding type: [C→A→B→D]

– second encoding type: [B→C→A→D]



Mutation
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Mutation

� Mutation is a variation operator

� Create one offspring from one parent

� Occurs at a mutation rate: pm

– behaviour of a GA depends on pm
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Bitwise Mutation

� flips bits 

– 0→1 and 1→0

� setting of pm depends on nature of problem, 

typically between:

1 / pop_size1 / pop_size

1 / chromosome_length



Genetic Algorithms: Part 3

Mutation for Integer Representation

� For integers there are two principal forms of 

mutation:

– Random resetting

– Creep Mutation

� Both of them, mutate each gene independently 

with user-defined probability pm
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Random Resetting

� A new value is chosen with from the set 
of permissible integer values

� Most suitable for cardinal attributes
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Creep Mutation

� Add small (positive / negative) integer to gene 

value

– random value

– sampled from a distribution

� symmetric around 0� symmetric around 0

� with higher probability of small changes

� Designed for ordinal attributes

� Step size is important

– controlled by parameters

– setting of parameters important
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Mutation for Floating-Point Representation

� Allele values come from a continuous 
distribution

� Change allele values randomly within its 

domain

– upper and lower boundaries, U and L respectively– upper and lower boundaries, Ui and Li respectively
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Mutation for Floating-Point Representation

� According to the probability distribution from 

which the new gene values are drawn, there 

are two types of floating-point mutation:

– Uniform Mutation

– Non-Uniform Mutation with a Fixed Distribution– Non-Uniform Mutation with a Fixed Distribution
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Uniform Mutation

� Values of xi drawn uniformly randomly from the 

[Li,Ui], Similar to 

– bit flipping for binary representations

– random resetting for integer representations

� usually used with positionwise mutation � usually used with positionwise mutation 

probability
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Non-Uniform Mutation with a Fixed Distribution

� Most common form

� Similar to creep mutation for integer 

representations

� Add an amount to gene value

Amount randomly drawn from a distribution � Amount randomly drawn from a distribution 



Genetic Algorithms: Part 3

Non-Uniform Mutation with a Fixed Distribution

� Gaussian distribution (normal distribution)

– with mean 0 

– user-specified standard deviation

– may have to adjust to interval [Li,Ui]

– 2/3 of samples lie within one standard deviation of – 2/3 of samples lie within one standard deviation of 

mean (- σ to + σ)

– most changes small but probability of very large 

changes > 0
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Non-Uniform Mutation with a Fixed Distribution

� Usually applied to each gene with probability 1

� pm used to determine standard deviation of 

distribution

– determines probability distribution of size of steps 

takentaken
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Mutation for Permutation Representations

� It is not possible to consider genes 

independently

� Move alleles around in genome

– Therefore must change at least two values

� Mutation probability now shows the probability � Mutation probability now shows the probability 

that mutation operator is applied once to the 

whole string, rather than individually in each 
position
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Mutation for Permutation Representations

� There four types of mutation operators 
for permutation:

– Swap Mutation

– Insert Mutation

– Scramble Mutation

– Inversion Mutation
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Swap Mutation

� Pick two alleles at random and swap their 

positions

� Preserves most of adjacency information (4 

links broken), disrupts order more
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Insert Mutation

� Pick two allele values at random

� Move the second to follow the first, shifting 

the rest along to make room

� Note that this preserves most of the order and 

the adjacency informationthe adjacency information
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Scramble Mutation

� Pick a subset of genes at random

� Randomly rearrange the alleles in those 

positions
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Inversion Mutation

� Pick two alleles at random and then invert the 

substring between them.

� Preserves most adjacency information (only 

breaks two links) but disruptive of order 

informationinformation



Recombination
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Recombination

� Recombination is the process for creating 

new individual

– two or more parents

� Term used interchangably with crossover

– Crossover mostly refers to 2 parents– Crossover mostly refers to 2 parents

� This is the primary mechanism for creating 

diversity.

� Crossover rate pc

– typically in range [0.5,1.0]

– acts on parent pair
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Recombination

� Two parents selected randomly

� A random variable drawn from [0,1)

� If value < pc

– two offspring created through recombination

else � else 

– two offspring created asexually (copy of parents)
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Recombination

� Crossing over vs. mutation probability

– The mutation probability pm controls how 

parts of the chromosome are changed 

independently

The crossover probability p determines the – The crossover probability pc determines the 

chance that a chosen pair of parents 

undergoes this operator.
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Recombination for Binary Representation

� There are three standard forms of 
recombination for binary representation:

– One-Point Crossover

– N-Point Crossover

– Uniform Crossover
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One-Point Crossover

� Choose a random number in the range [1, l -1], 
with l the length of the encoding

� Split parents at this crossover point

� Create children by exchanging tails
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N-Point Crossover

� Generalisation of 1 point

� Choose n random crossover points

� Split along those points

� Join parts, alternating between parents
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N-Point Crossover

N=2N=2

N=3
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Uniform Crossover

� Uniform crossover works by treating each gene 

independently 

� Making a random choice as to which parent it 

should be inherited from

Assume array: [0.35, 0.62, 0.18, 0.42, 0.83, 0.76, 0.39, 0.51, 0.36]
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Recombination for Binary Representation

� Positional bias

– e.g. in 1-point crossover bias against keeping bits at 

head and tail of string together

� Distributional bias

– in uniform crossover bias is towards transmitting – in uniform crossover bias is towards transmitting 

50% of genes from each parent
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Recombination for Integer Representation

� same as in binary representations

� N-point / uniform crossover operators 
work

� Blending is not useful� Blending is not useful

– averaging even and odd integers produce a 

non-integer !
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Recombination for Floating-Point Representation

� There two options for recombining two floating-

point strings:

– Discrete Recombination

– Intermediate or Arithmetic Recombination
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Recombination for Floating-Point Representation

� Discrete Recombination:

– similar to crossover operators for bit-strings

– alleles have floating-point representations

– each allele value in offspring z comes from one of 

its parents (x, y) with equal probability: zi = xi or zi = its parents (x, y) with equal probability: zi = xi or zi = 

yi

– Could use n-point or uniform crossover operators 
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� Intermediate or Arithmetic Recombination:
– for each gene position

– new allele value between those of parents (x, y): 

– zi = α xi + (1 - α) yi where α : 0 ≤ α ≤ 1.

– The parameter α can be:

Recombination for Floating-Point Representation

– The parameter α can be:
• constant: (uniform arithmetical crossover), usually α =

0.5
• picked at random every time
• variable (e.g. depend on the age of the population)
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� There three types of arithmetic 
recombination:

– Simple Arithmetic Recombination

– Single Arithmetic Recombination

– Whole Arithmetic Recombination

Recombination for Floating-Point Representation

– Whole Arithmetic Recombination



Genetic Algorithms: Part 3

Simple Arithmetic Recombination

• Parents: 〈〈〈〈x1,…,xn 〉〉〉〉 and 〈〈〈〈y1,…,yn〉〉〉〉

• Pick random gene (k) after this point mix values
• Put the first k floats of parent and put them into 

child
• The rest is arithmetic average of parent 1 and 2:

Child 1:

<x1,...,xk, αyk+1+(1-α)xk+1,…,αyn+(1-α)xn> 

Child 2:

<y1,...,yk, αxk+1+(1-α)yk+1,…, αxn+(1-α)yn>
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Simple Arithmetic Recombination

Example: k=6, α=0.5
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Single Arithmetic Recombination

� Parents: 〈〈〈〈x1,…,xn 〉〉〉〉 and 〈〈〈〈y1,…,yn〉〉〉〉

� Pick a single gene (k) at random

� At that position, take the arithmetic average of the 
two parents, the other points from the parents

child1:child1:

<x1,...,xk-1, αyk+(1-α)xk, xk+1,…, xn> 

child2:

<y1,...,yk-1, αxk+(1-α)yk, yk+1,…, yn>
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Single Arithmetic Recombination

Example: k=8, α=0.5
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Whole Arithmetic Recombination

� Most commonly used

� Parents: 〈〈〈〈x1,…,xn 〉〉〉〉 and 〈〈〈〈y1,…,yn〉〉〉〉

� takes weighted sum of the two parental alleles 

for each gene

xyChild

yxChild

.)1(.2

.)1(.1

αα

αα

−+=

−+=
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Whole Arithmetic Recombination

α=0.5

� Note: if α=0.5 two offspring are identical!
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Recombination for Permutations Representation

� “Normal” crossover operators will often lead to 

inadmissible solutions

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 5

� Many specialised operators have been devised 

which focus on combining order or adjacency
information from the two parents

5 4 3 2 1 5 4 3 4 5
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Recombination for Permutations Representation

� Most commonly used operators:

– For Adjacency-type Problems (e.g. TSP)

� Partially Mapped Crossover (PMX)

� Edge Crossover

– For Order-type Problems (e.g. Job Shop For Order-type Problems (e.g. Job Shop 

Scheduling)

� Order Crossover

� Cycle Crossover
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Partially Mapped Crossover (PMX)

1. Choose random segment and copy it from P1 

2. Starting from the first crossover point look for 
elements in that segment of P2 that have not been 
copied

3. For each of these i look in the offspring to see what 
element j has been copied in its place from P1

4. Place i into the position occupied j in P2, since we 4. Place i into the position occupied j in P2, since we 
know that we will not be putting j there (as is already 
in offspring)

5. If the place occupied by j in P2 has already been 
filled in the offspring k, put i in the position occupied 
by k in P2

6. Having dealt with the elements from the crossover 
segment, the rest of the offspring can be filled from 
P2. 

Second child is created analogously
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Partially Mapped Crossover example

� Step 1

� Step 2� Step 2

� Step 3
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Edge Crossover

� Works by constructing a table listing which edges are 

present in the two parents, if an edge is common to 

both, mark with a +

� e.g. [1 2 3 4 5 6 7 8 9] and [9 3 7 8 2 6 5 1 4]
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Edge Crossover

(once edge table is constructed)

1. Pick an initial element at random and put it in the 
offspring

2. Set the variable current element = entry

3. Remove all references to current element from the table

4. Examine list for current element:4. Examine list for current element:
– If there is a common edge, pick that to be next element

– Otherwise pick the entry in the list which itself has the shortest 
list

– Ties are split at random

5. In the case of reaching an empty list:
– Examine the other end of the offspring is for extension

– Otherwise a new element is chosen at random
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Edge Recombination example

Parents: [1 2 3 4 5 6 7 8 9] and [9 3 7 8 2 6 5 1 4]
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� Idea is to preserve relative order that elements 
occur

� Procedure:
1. Choose an arbitrary part from the first parent

2. Copy this part to the first child

Order Crossover

2. Copy this part to the first child

3. Copy the numbers that are not in the first part, to 
the first child:
� starting right from cut point of the copied part, 

� using the order of the second parent 

� and wrapping around at the end

4. Analogous for the second child, with parent roles 
reversed
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Order Crossover example

� Copy randomly selected set from first parent

� Copy rest from second parent in order 1,9,3,8,2
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Cycle crossover

Basic idea: Each allele comes from one parent together 

with its position.

procedure:

1. Make a cycle of alleles from P1 in the following way. 

(a) Start with the first allele of P1. (a) Start with the first allele of P1. 

(b) Look at the allele at the same position in P2.

(c) Go to the position with the same allele in P1. 

(d) Add this allele to the cycle.

(e) Repeat step b through d until you arrive at the first allele of P1.

2. Put the alleles of the cycle in the first child on the positions 

they have in the first parent.

3. Take next cycle from second parent



Genetic Algorithms: Part 3

Cycle crossover example

� Step 1: identify cycles

Step 2: copy alternate cycles into offspring� Step 2: copy alternate cycles into offspring
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Multi-Parent recombination

� Recall that we are not limited by the 

practicalities of nature

� Noting that mutation uses 1 parent, and 

“traditional” crossover 2, the extension to a > 2 

is natural to examineis natural to examine

� Been around since 1960s, still rare but studies 

indicate useful
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Multi-Parent recombination

� Three main types:

– Based on allele frequencies

� e.g., uniform crossover

– Based on segmentation and recombination of 
the parents

� e.g., n-point crossover

– Based on numerical operations on real-valued 
alleles

� e.g., generalising arithmetic recombination operators
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Crossover OR mutation?

� Decade long debate: which one is better / 

necessary / main-background 

� Answer (at least, rather wide agreement):

it depends on the problem, but– it depends on the problem, but

– in general, it is good to have both

– both have another role
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Crossover OR mutation? 

� Exploration: Discovering promising areas in the 

search space, i.e. gaining information on the problem

� Exploitation: Optimising within a promising area, i.e. 

using information

� There is co-operation AND competition between themThere is co-operation AND competition between them

� Crossover is explorative

– it makes a big jump to an area somewhere “in between” two 
(parent) areas

� Mutation is exploitative

– it creates random small diversions, thereby staying near (in the 
area of ) the parent
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Crossover OR mutation? (cont’d)

� Only crossover can combine information 
from two parents

� Only mutation can introduce new information 
(alleles)

� Crossover does not change the allele � Crossover does not change the allele 

frequencies of the population 

– e.g. thought experiment: 50% 0’s on first bit in the 

population, 50% after performing n crossovers

� To hit the optimum you often need a ‘lucky’ 

mutation



Population Models
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Population Models

� Population Models:

– Generational model

– Steady state model
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Generational Model

� Population of individuals : size N

� Mating pool (parents) : size N

� Offspring 

– formed from parents

replace parents– replace parents

– are next generation : size N
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Steady State Model

� Not whole population replaced

� N: population size (M < N)

– M individuals replaced by M offspring

� Generational Gap

percentage of the population that is replaced– percentage of the population that is replaced

– equal to M/N

� M=1 & generational gap of 1/N has widely 

applied



Parent Selection
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Selection Types

� Selection can occur in two places:

– Selection from current generation to take part in 

mating (parent selection) 

– Selection from parents + offspring to go into next 

generation (survivor selection)generation (survivor selection)
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Parent Selection

� The parent selection operation chooses an 

individual (chromosome) to be a parent for the 

next generation of the population, based on its 

fitness
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Parent Selection

� Selection scheme: process that selects an 

individual to go into the mating pool

� Selection pressure: degree to which the 

better individuals are favoured better individuals are favoured 

– if higher selection pressure, better individuals 

favoured more

– Determines convergence rate:

� if too high, possible premature convergence

� if too low, may take too long to find good solutions
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Selection scheme

� Selection scheme types:

– Fitness-Proportionate, e. g.:

� Roulette Wheel Selection (RWS)

� Stochastic Universal Sampling (SUS)

– Ordinal based, e.g.:Ordinal based, e.g.:

� Ranking Selection

� Tournament Selection
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Fitness-Proportionate Selection

� The probability that an individual fi is selected 

for mating pool is 

Selection probability depends on:

∑ =

µ

1
/

j ji ff

� Selection probability depends on:

– absolute fitness of individual compared to 

absolute fitness of rest of the population
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Roulette Wheel Selection

� Main idea: better individuals get higher chance

– Chances are proportional to fitness

� Implementation

– Assign to each individual a part of the roulette wheel

– Spin the wheel n times to select n individuals– Spin the wheel n times to select n individuals
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Roulette Wheel Selection

f1

f2
f7

f3

f4
f5

f6

m=7
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Roulette Wheel Algorithm

� is defined by the selection distribution:

– fitness proportionate

– ranking.

)(iPsel

� [a1, a2, …., aµ] by: (aµ = 1.0)

– m: population size

∑ ==
i

seli miiPa
1

,...,2,1)(
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Roulette Wheel Algorithm
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Roulette Wheel Algorithm

Chromosome Fitness pi ai

00110010001100 13477 0.265 0.265

11101100000001 12588 0.248 0.513

Fitness based weighting: assign distributions by fitness

11101100000001 12588 0.248 0.513

00101111001000 12363 0.243 0.756

00101111000110 12359 0.243 1.0
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Stochastic Universal Sampling

� Stochastic Universal Sampling (SUS) spins 

the wheel once—but with M equally spaced 

pointers, which are used to selected the M 

parents.
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Stochastic Universal Sampling

f4
f1

f2f3

f4

m=4
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Stochastic Universal Sampling
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Fitness Proportionate Selection

� Problems with FPS

1. Premature Convergence

� One highly fit member can rapidly take over if rest of 
population is much less fit

� Population converges to a local optimum

Too much exploitation; too few exploration� Too much exploitation; too few exploration

2. Almost no selection pressure when fitness 
values close together

� Fitness scaling effects

– May behave differently on transposed versions of 

same fitness function

– e.g. consider f(x) and y(x)=f(x)+10;
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Fitness Scaling Effects
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Fitness Proportionate Selection

� Scaling can fix last two problems

� Windowing: 

– f’(i) = f(i) - β

– where β is worst fitness in this (last n) generations

� Sigma Scaling: � Sigma Scaling: 

– f’(i) = max( f(i) - (µf - c⋅σf ), 0)

– where 

� µf is the mean of fitness values, 

� σf is the standard deviation of the fitness values, and 

� c is a constant, usually 2

– if f’(i) <0 then set f’(i)=0
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Ranking Selection

� Ordinal based method

� Attempt to remove problems of FPS by basing 

selection probabilities on relative rather than 

absolute fitness

� Population sorted by fitness� Population sorted by fitness

� Selection probabilities based on rank, not to 

their actual fitness

� The actual fitness value is less important, it is 

the rank in this order what matters

� Constant selection pressure
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Ranking Selection

� This imposes a sorting overhead on the 

algorithm, but this is usually negligible 

compared to the fitness evaluation time

� How to allocate probabilities to ranks� How to allocate probabilities to ranks

– can be any linear or non-linear function

– e.g. linear ranking selection (LRS)
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Linear Ranking

� s: is a parameterized factor, 1.0 < s ≤ 2.0s: is a parameterized factor, 1.0 < s ≤ 2.0

– measures advantage of best individual

– in generational GA s: no. of expected offspring 

allotted to best

� µ is the mean of fitness values
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Linear Ranking

� Simple 3 member example
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Tournament Selection

� Ordinal based

� RWS and SUS uses info on whole population

– info may not be available

� population too large

� population distributed on a parallel system� population distributed on a parallel system
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Tournament Selection

� Relies on an ordering relation to rank any n 

individuals

� Most widely used approach

� Tournament size k

if k large, more of the fitter individuals– if k large, more of the fitter individuals

– controls selection pressure

� k=2 : lowest selection pressure

� higher k increases selection pressure
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Tournament Selection

µ: population size      k: tournament size

Assumes that a tournament

is held at this point



Survivor Selection
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Survivor Selection

� Also known as replacement

� Determines who survives into next generation

– reduces (m+l) to m

� m population size (also no. of parents)

� l no. of offspring at end of generation� l no. of offspring at end of generation

� several replacement strategies
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Survivor Selection

� Survivor selection can be divided into two 

approaches:

– Age-Based Selection

� FIFO

� Replace random

– Fitness-Based Selection

� Elitism

� GENITOR
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Age-Based Replacement

� Fitness not taken into account

� Each inidividual exists for same number of 

generations

– in SGA only for 1 generation

� e.g. create 1 offspring and insert into � e.g. create 1 offspring and insert into 

population at each generation

– FIFO

– Replace random (not recommended)
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Fitness-Based Replacement

� Elitism

– Always keep the best or the best few of the of the 

fittest solution so far

– Ensures that the best found solution (s) are never 

lostlost

� GENITOR: a.k.a. “delete-worst”

– Rapid takeover: use with large populations or “no 

duplicates” policy

– fast increase in population mean

– possible premature convergence



Glossary
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Glossary

� allele: a variant of a gene, i.e. the value of a 

symbol in a specified position of the genotype.

� chromosome: synonymous to “genotype”.

� crossover: combination of two individuals to 

form one or two new individuals.form one or two new individuals.

� fitness function: function giving the value of 

an individual.

� generation: iteration of the basic loop of an 

genetic algorithm.
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Glossary

� gene: an element of a genotype, i.e. one of the 

symbols of a symbol string.

� genotype: a symbol string generating a 

phenotype at the time of a decoding phase.

� individual: an instance of solution for a � individual: an instance of solution for a 

problem dealt with by genetic algorithm.

� locus: position of a gene in the genotype.

� mutation: random modification of an 

individual.

� search operator: synonymous to “variation 

operator”.
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Glossary

� replacement operator: determines which 

individuals of a population will be replaced by 

the offspring. It thus makes it possible to create 

the new population for the next generation.

� selection operator: determines how much � selection operator: determines how much 

time a “parent” individual generates “offspring” 

individuals.

� variation operator: operator modifying the 

structure, the parameters of an individual, such 

as the crossover and the mutation.
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Glossary

� phenotype: set of the observable appearances 

of the genotype. More specifically, it is an 

instance of solution for the problem dealt with, 

expressed in its natural representation 

obtained after decoding the genotype.obtained after decoding the genotype.

� population: the set of the individuals who 

evolve simultaneously under the action of an 

evolutionary algorithm.

� recombination: synonymous to “crossover”.
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