
7. Genetic Algorithms

7.3 The Component of Genetic Algorithms

Fall 2010

Instructor: Dr. Masoud Yaghini

Genetic Algorithms: Part 3

Outline

� Representation of Individuals

� Mutation

� Recombination

� Population Models

� Parent Selection

� Survivor Selection

� Glossary

� References

Representation of Individuals

Genetic Algorithms: Part 3

Representation of Individuals

� Depends on the problem

� The most used encodings:

– Binary representation

– Integer representation

– Real-valued representation– Real-valued representation

– Permutations representation

Genetic Algorithms: Part 3

Binary Representations

� Simplest and most common

� Chromosome: string of bits

– genes: 0 / 1

� Example: binary representation of an integer

3: 00011

15: 01111

16: 10000

Genetic Algorithms: Part 3

Binary Representation

� For those problem concerning Boolean
decision variables, the genotype-

phenotype mapping is natural

– Example: knapsack problem

� Many optimization problems involve

integer or real numbers and bit string can

be used to encode these numbers

Genetic Algorithms: Part 3

Mapping Integer Values on Bit Strings

� Integer values can be also binary coded:
– x = 5 → 00101

Genetic Algorithms: Part 3

Mapping real values on bit strings

� Real values can be also binary coded

� z ∈ [x, y] ⊆⊆⊆⊆ ℜ represented by {a1,…,aL} ∈ {0,1}L

� [x, y] → {0,1}L must be invertible (one phenotype

per genotype)

Γ →� Γ: {0,1}L → [x, y] defines the representation

– Only 2L values out of infinite are represented

– L determines possible maximum precision of solution

– High precision � long chromosomes (slow evolution)

],[)2(
12

),...,(
1

0

1 yxa
xy

xaa
j

L

j

jLLL ∈⋅⋅
−

−
+=Γ ∑

−

=

−

Genetic Algorithms: Part 3

Mapping real values on bit strings

� Example:
– z ∈ [1, 10]

– We use L = 8 bits to represent real values in the
domain [1, 10] , i.e., we use 256 numbers

1 → 00000000 (0)

10 → 11111111 (255)10 → 11111111 (255)

– Convert 00111100, to real value:
1 + ((10-1) / (256-1)) * [(0 * 20) + (0 * 21) + (1 * 22) + (1 * 23) + (1 *

24) + (1 * 25) + (0 * 26) + (0 * 27)] = 3.12

– Convert n = 3.14 to bit string:
n = 3.14 → (3.14-1)*255/(10-1) = 60 → 00111100

0011 1100 → 3.12 (better precision requires more bits)

Genetic Algorithms: Part 3

Binary Representations

� Hamming distance:

– Number of bits that have to be changed to map one

string into another one

– E.g. 000 and 001 � distance = 1

� Problem: Hamming distance between � Problem: Hamming distance between

consecutive integers may be > 1

� example: 5 bit binary representation

14: 01110 15: 01111 16: 10000

– Probability of changing 15 into 16 by independent bit

flips (mutation) is not same as changing it into 14!

Genetic Algorithms: Part 3

Binary encoding problem

� Remember: small changes in genotype should

cause small changes in phenotype

� Gray coding solves problem.

Genetic Algorithms: Part 3

Binary Representation

• Binary coding of 0-7 :

0102

0011

0000 • Hamming distance, e.g.:

– 000 (0) and 001 (1)

1106

1117

1015

1004

0113

0102 – 000 (0) and 001 (1)

• Distance = 1 (optimal)

– 011 (3) and 100 (4)

• Distance = 3 (max possible)

Genetic Algorithms: Part 3

Binary Representation

• Gray coding of 0-7:

• Gray coding is a representation

that ensures that consecutive

integers always have Hamming

distance one.
0103

0112

0011

0000

• Gray coding is a mapping that

means that small changes in the

genotype cause small changes in

the phenotype (unlike binary

coding).

1016

1007

1115

1104

0103

Genetic Algorithms: Part 3

Binary Representation

� Nowadays it is generally accepted that it is

better to encode numerical variables directly

as:

– Integers

– Floating point variables

Genetic Algorithms: Part 3

Integer representations

� Some problems naturally have integer
variables

– e.g. for optimization of a function with integer

variables

� Values may be� Values may be

– unrestricted (all integers)

– restricted to a finite set

� e.g. {0,1,2,3}

� e.g. {North,East,South,West}

Genetic Algorithms: Part 3

Integer representations

� Any natural relations between possible
values?

– obvious for ordinal attributes
� 2 is more like 3 than it is 389

� small < medium < large� small < medium < large

� hot > mild > cool

– maybe no natural ordering for cardinal
attributes

� e.g. set of compass points

� e.g. employee ID

Genetic Algorithms: Part 3

Real-valued Representation

� Many problems occur as real valued problems,

e.g. continuous parameter optimization

– Example: a chromosome can be a pair

(x, y)

� Vector of real values� Vector of real values

– floating point numbers

� Genotype for solution becomes the vector
<x1,x2,…,xk> with xi∈ℜ

Genetic Algorithms: Part 3

Permutation Representations

� Deciding on sequence of events

– most natural representation is permutation of a set

of integers

� In ordinary GA numbers may occur more than

once on chromosomeonce on chromosome

– invalid permutations!

� New variation operators needed

Genetic Algorithms: Part 3

Permutation Representations

� Two classes of problems

– based on order of events

� e.g. scheduling of jobs

– Job-Shop Scheduling Problem

– based on adjacenciesbased on adjacencies

� e.g. Travelling Salesperson Problem (TSP)

– finding a complete tour of minimal length between n
cities, visiting each city only once

Genetic Algorithms: Part 3

Permutation Representations

� Two ways to encode a permutation

– i th element represents event that happens in that

location in a sequence

– value of i th element denotes position in sequence

in which i th event occursin which i th event occurs

� Example (TSP): 4 cities A,B,C,D and

permutation [3,1, 2, 4] denotes the tours:

– first encoding type: [C→A→B→D]

– second encoding type: [B→C→A→D]

Mutation

Genetic Algorithms: Part 3

Mutation

� Mutation is a variation operator

� Create one offspring from one parent

� Occurs at a mutation rate: pm

– behaviour of a GA depends on pm

Genetic Algorithms: Part 3

Bitwise Mutation

� flips bits

– 0→1 and 1→0

� setting of pm depends on nature of problem,

typically between:

1 / pop_size1 / pop_size

1 / chromosome_length

Genetic Algorithms: Part 3

Mutation for Integer Representation

� For integers there are two principal forms of

mutation:

– Random resetting

– Creep Mutation

� Both of them, mutate each gene independently

with user-defined probability pm

Genetic Algorithms: Part 3

Random Resetting

� A new value is chosen with from the set
of permissible integer values

� Most suitable for cardinal attributes

Genetic Algorithms: Part 3

Creep Mutation

� Add small (positive / negative) integer to gene

value

– random value

– sampled from a distribution

� symmetric around 0� symmetric around 0

� with higher probability of small changes

� Designed for ordinal attributes

� Step size is important

– controlled by parameters

– setting of parameters important

Genetic Algorithms: Part 3

Mutation for Floating-Point Representation

� Allele values come from a continuous
distribution

� Change allele values randomly within its

domain

– upper and lower boundaries, U and L respectively– upper and lower boundaries, Ui and Li respectively

[]iiii

nn

ULxxwhere

xxxxxx

,,

,...,,,...,, 2121

∈′

>′′′<→><

Genetic Algorithms: Part 3

Mutation for Floating-Point Representation

� According to the probability distribution from

which the new gene values are drawn, there

are two types of floating-point mutation:

– Uniform Mutation

– Non-Uniform Mutation with a Fixed Distribution– Non-Uniform Mutation with a Fixed Distribution

Genetic Algorithms: Part 3

Uniform Mutation

� Values of xi drawn uniformly randomly from the

[Li,Ui], Similar to

– bit flipping for binary representations

– random resetting for integer representations

� usually used with positionwise mutation � usually used with positionwise mutation

probability

Genetic Algorithms: Part 3

Non-Uniform Mutation with a Fixed Distribution

� Most common form

� Similar to creep mutation for integer

representations

� Add an amount to gene value

Amount randomly drawn from a distribution � Amount randomly drawn from a distribution

Genetic Algorithms: Part 3

Non-Uniform Mutation with a Fixed Distribution

� Gaussian distribution (normal distribution)

– with mean 0

– user-specified standard deviation

– may have to adjust to interval [Li,Ui]

– 2/3 of samples lie within one standard deviation of – 2/3 of samples lie within one standard deviation of

mean (- σ to + σ)

– most changes small but probability of very large

changes > 0

Genetic Algorithms: Part 3

Non-Uniform Mutation with a Fixed Distribution

� Usually applied to each gene with probability 1

� pm used to determine standard deviation of

distribution

– determines probability distribution of size of steps

takentaken

Genetic Algorithms: Part 3

Mutation for Permutation Representations

� It is not possible to consider genes

independently

� Move alleles around in genome

– Therefore must change at least two values

� Mutation probability now shows the probability � Mutation probability now shows the probability

that mutation operator is applied once to the

whole string, rather than individually in each
position

Genetic Algorithms: Part 3

Mutation for Permutation Representations

� There four types of mutation operators
for permutation:

– Swap Mutation

– Insert Mutation

– Scramble Mutation

– Inversion Mutation

Genetic Algorithms: Part 3

Swap Mutation

� Pick two alleles at random and swap their

positions

� Preserves most of adjacency information (4

links broken), disrupts order more

Genetic Algorithms: Part 3

Insert Mutation

� Pick two allele values at random

� Move the second to follow the first, shifting

the rest along to make room

� Note that this preserves most of the order and

the adjacency informationthe adjacency information

Genetic Algorithms: Part 3

Scramble Mutation

� Pick a subset of genes at random

� Randomly rearrange the alleles in those

positions

Genetic Algorithms: Part 3

Inversion Mutation

� Pick two alleles at random and then invert the

substring between them.

� Preserves most adjacency information (only

breaks two links) but disruptive of order

informationinformation

Recombination

Genetic Algorithms: Part 3

Recombination

� Recombination is the process for creating

new individual

– two or more parents

� Term used interchangably with crossover

– Crossover mostly refers to 2 parents– Crossover mostly refers to 2 parents

� This is the primary mechanism for creating

diversity.

� Crossover rate pc

– typically in range [0.5,1.0]

– acts on parent pair

Genetic Algorithms: Part 3

Recombination

� Two parents selected randomly

� A random variable drawn from [0,1)

� If value < pc

– two offspring created through recombination

else � else

– two offspring created asexually (copy of parents)

Genetic Algorithms: Part 3

Recombination

� Crossing over vs. mutation probability

– The mutation probability pm controls how

parts of the chromosome are changed

independently

The crossover probability p determines the – The crossover probability pc determines the

chance that a chosen pair of parents

undergoes this operator.

Genetic Algorithms: Part 3

Recombination for Binary Representation

� There are three standard forms of
recombination for binary representation:

– One-Point Crossover

– N-Point Crossover

– Uniform Crossover

Genetic Algorithms: Part 3

One-Point Crossover

� Choose a random number in the range [1, l -1],
with l the length of the encoding

� Split parents at this crossover point

� Create children by exchanging tails

Genetic Algorithms: Part 3

N-Point Crossover

� Generalisation of 1 point

� Choose n random crossover points

� Split along those points

� Join parts, alternating between parents

Genetic Algorithms: Part 3

N-Point Crossover

N=2N=2

N=3

Genetic Algorithms: Part 3

Uniform Crossover

� Uniform crossover works by treating each gene

independently

� Making a random choice as to which parent it

should be inherited from

Assume array: [0.35, 0.62, 0.18, 0.42, 0.83, 0.76, 0.39, 0.51, 0.36]

Genetic Algorithms: Part 3

Recombination for Binary Representation

� Positional bias

– e.g. in 1-point crossover bias against keeping bits at

head and tail of string together

� Distributional bias

– in uniform crossover bias is towards transmitting – in uniform crossover bias is towards transmitting

50% of genes from each parent

Genetic Algorithms: Part 3

Recombination for Integer Representation

� same as in binary representations

� N-point / uniform crossover operators
work

� Blending is not useful� Blending is not useful

– averaging even and odd integers produce a

non-integer !

Genetic Algorithms: Part 3

Recombination for Floating-Point Representation

� There two options for recombining two floating-

point strings:

– Discrete Recombination

– Intermediate or Arithmetic Recombination

Genetic Algorithms: Part 3

Recombination for Floating-Point Representation

� Discrete Recombination:

– similar to crossover operators for bit-strings

– alleles have floating-point representations

– each allele value in offspring z comes from one of

its parents (x, y) with equal probability: zi = xi or zi = its parents (x, y) with equal probability: zi = xi or zi =

yi

– Could use n-point or uniform crossover operators

Genetic Algorithms: Part 3

� Intermediate or Arithmetic Recombination:
– for each gene position

– new allele value between those of parents (x, y):

– zi = α xi + (1 - α) yi where α : 0 ≤ α ≤ 1.

– The parameter α can be:

Recombination for Floating-Point Representation

– The parameter α can be:
• constant: (uniform arithmetical crossover), usually α =

0.5
• picked at random every time
• variable (e.g. depend on the age of the population)

Genetic Algorithms: Part 3

� There three types of arithmetic
recombination:

– Simple Arithmetic Recombination

– Single Arithmetic Recombination

– Whole Arithmetic Recombination

Recombination for Floating-Point Representation

– Whole Arithmetic Recombination

Genetic Algorithms: Part 3

Simple Arithmetic Recombination

• Parents: 〈〈〈〈x1,…,xn 〉〉〉〉 and 〈〈〈〈y1,…,yn〉〉〉〉

• Pick random gene (k) after this point mix values
• Put the first k floats of parent and put them into

child
• The rest is arithmetic average of parent 1 and 2:

Child 1:

<x1,...,xk, αyk+1+(1-α)xk+1,…,αyn+(1-α)xn>

Child 2:

<y1,...,yk, αxk+1+(1-α)yk+1,…, αxn+(1-α)yn>

Genetic Algorithms: Part 3

Simple Arithmetic Recombination

Example: k=6, α=0.5

Genetic Algorithms: Part 3

Single Arithmetic Recombination

� Parents: 〈〈〈〈x1,…,xn 〉〉〉〉 and 〈〈〈〈y1,…,yn〉〉〉〉

� Pick a single gene (k) at random

� At that position, take the arithmetic average of the
two parents, the other points from the parents

child1:child1:

<x1,...,xk-1, αyk+(1-α)xk, xk+1,…, xn>

child2:

<y1,...,yk-1, αxk+(1-α)yk, yk+1,…, yn>

Genetic Algorithms: Part 3

Single Arithmetic Recombination

Example: k=8, α=0.5

Genetic Algorithms: Part 3

Whole Arithmetic Recombination

� Most commonly used

� Parents: 〈〈〈〈x1,…,xn 〉〉〉〉 and 〈〈〈〈y1,…,yn〉〉〉〉

� takes weighted sum of the two parental alleles

for each gene

xyChild

yxChild

.)1(.2

.)1(.1

αα

αα

−+=

−+=

Genetic Algorithms: Part 3

Whole Arithmetic Recombination

α=0.5

� Note: if α=0.5 two offspring are identical!

Genetic Algorithms: Part 3

Recombination for Permutations Representation

� “Normal” crossover operators will often lead to

inadmissible solutions

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 5

� Many specialised operators have been devised

which focus on combining order or adjacency
information from the two parents

5 4 3 2 1 5 4 3 4 5

Genetic Algorithms: Part 3

Recombination for Permutations Representation

� Most commonly used operators:

– For Adjacency-type Problems (e.g. TSP)

� Partially Mapped Crossover (PMX)

� Edge Crossover

– For Order-type Problems (e.g. Job Shop For Order-type Problems (e.g. Job Shop

Scheduling)

� Order Crossover

� Cycle Crossover

Genetic Algorithms: Part 3

Partially Mapped Crossover (PMX)

1. Choose random segment and copy it from P1

2. Starting from the first crossover point look for
elements in that segment of P2 that have not been
copied

3. For each of these i look in the offspring to see what
element j has been copied in its place from P1

4. Place i into the position occupied j in P2, since we 4. Place i into the position occupied j in P2, since we
know that we will not be putting j there (as is already
in offspring)

5. If the place occupied by j in P2 has already been
filled in the offspring k, put i in the position occupied
by k in P2

6. Having dealt with the elements from the crossover
segment, the rest of the offspring can be filled from
P2.

Second child is created analogously

Genetic Algorithms: Part 3

Partially Mapped Crossover example

� Step 1

� Step 2� Step 2

� Step 3

Genetic Algorithms: Part 3

Edge Crossover

� Works by constructing a table listing which edges are

present in the two parents, if an edge is common to

both, mark with a +

� e.g. [1 2 3 4 5 6 7 8 9] and [9 3 7 8 2 6 5 1 4]

Genetic Algorithms: Part 3

Edge Crossover

(once edge table is constructed)

1. Pick an initial element at random and put it in the
offspring

2. Set the variable current element = entry

3. Remove all references to current element from the table

4. Examine list for current element:4. Examine list for current element:
– If there is a common edge, pick that to be next element

– Otherwise pick the entry in the list which itself has the shortest
list

– Ties are split at random

5. In the case of reaching an empty list:
– Examine the other end of the offspring is for extension

– Otherwise a new element is chosen at random

Genetic Algorithms: Part 3

Edge Recombination example

Parents: [1 2 3 4 5 6 7 8 9] and [9 3 7 8 2 6 5 1 4]

Genetic Algorithms: Part 3

� Idea is to preserve relative order that elements
occur

� Procedure:
1. Choose an arbitrary part from the first parent

2. Copy this part to the first child

Order Crossover

2. Copy this part to the first child

3. Copy the numbers that are not in the first part, to
the first child:
� starting right from cut point of the copied part,

� using the order of the second parent

� and wrapping around at the end

4. Analogous for the second child, with parent roles
reversed

Genetic Algorithms: Part 3

Order Crossover example

� Copy randomly selected set from first parent

� Copy rest from second parent in order 1,9,3,8,2

Genetic Algorithms: Part 3

Cycle crossover

Basic idea: Each allele comes from one parent together

with its position.

procedure:

1. Make a cycle of alleles from P1 in the following way.

(a) Start with the first allele of P1. (a) Start with the first allele of P1.

(b) Look at the allele at the same position in P2.

(c) Go to the position with the same allele in P1.

(d) Add this allele to the cycle.

(e) Repeat step b through d until you arrive at the first allele of P1.

2. Put the alleles of the cycle in the first child on the positions

they have in the first parent.

3. Take next cycle from second parent

Genetic Algorithms: Part 3

Cycle crossover example

� Step 1: identify cycles

Step 2: copy alternate cycles into offspring� Step 2: copy alternate cycles into offspring

Genetic Algorithms: Part 3

Multi-Parent recombination

� Recall that we are not limited by the

practicalities of nature

� Noting that mutation uses 1 parent, and

“traditional” crossover 2, the extension to a > 2

is natural to examineis natural to examine

� Been around since 1960s, still rare but studies

indicate useful

Genetic Algorithms: Part 3

Multi-Parent recombination

� Three main types:

– Based on allele frequencies

� e.g., uniform crossover

– Based on segmentation and recombination of
the parents

� e.g., n-point crossover

– Based on numerical operations on real-valued
alleles

� e.g., generalising arithmetic recombination operators

Genetic Algorithms: Part 3

Crossover OR mutation?

� Decade long debate: which one is better /

necessary / main-background

� Answer (at least, rather wide agreement):

it depends on the problem, but– it depends on the problem, but

– in general, it is good to have both

– both have another role

Genetic Algorithms: Part 3

Crossover OR mutation?

� Exploration: Discovering promising areas in the

search space, i.e. gaining information on the problem

� Exploitation: Optimising within a promising area, i.e.

using information

� There is co-operation AND competition between themThere is co-operation AND competition between them

� Crossover is explorative

– it makes a big jump to an area somewhere “in between” two
(parent) areas

� Mutation is exploitative

– it creates random small diversions, thereby staying near (in the
area of) the parent

Genetic Algorithms: Part 3

Crossover OR mutation? (cont’d)

� Only crossover can combine information
from two parents

� Only mutation can introduce new information
(alleles)

� Crossover does not change the allele � Crossover does not change the allele

frequencies of the population

– e.g. thought experiment: 50% 0’s on first bit in the

population, 50% after performing n crossovers

� To hit the optimum you often need a ‘lucky’

mutation

Population Models

Genetic Algorithms: Part 3

Population Models

� Population Models:

– Generational model

– Steady state model

Genetic Algorithms: Part 3

Generational Model

� Population of individuals : size N

� Mating pool (parents) : size N

� Offspring

– formed from parents

replace parents– replace parents

– are next generation : size N

Genetic Algorithms: Part 3

Steady State Model

� Not whole population replaced

� N: population size (M < N)

– M individuals replaced by M offspring

� Generational Gap

percentage of the population that is replaced– percentage of the population that is replaced

– equal to M/N

� M=1 & generational gap of 1/N has widely

applied

Parent Selection

Genetic Algorithms: Part 3

Selection Types

� Selection can occur in two places:

– Selection from current generation to take part in

mating (parent selection)

– Selection from parents + offspring to go into next

generation (survivor selection)generation (survivor selection)

Genetic Algorithms: Part 3

Parent Selection

� The parent selection operation chooses an

individual (chromosome) to be a parent for the

next generation of the population, based on its

fitness

Genetic Algorithms: Part 3

Parent Selection

� Selection scheme: process that selects an

individual to go into the mating pool

� Selection pressure: degree to which the

better individuals are favoured better individuals are favoured

– if higher selection pressure, better individuals

favoured more

– Determines convergence rate:

� if too high, possible premature convergence

� if too low, may take too long to find good solutions

Genetic Algorithms: Part 3

Selection scheme

� Selection scheme types:

– Fitness-Proportionate, e. g.:

� Roulette Wheel Selection (RWS)

� Stochastic Universal Sampling (SUS)

– Ordinal based, e.g.:Ordinal based, e.g.:

� Ranking Selection

� Tournament Selection

Genetic Algorithms: Part 3

Fitness-Proportionate Selection

� The probability that an individual fi is selected

for mating pool is

Selection probability depends on:

∑ =

µ

1
/

j ji ff

� Selection probability depends on:

– absolute fitness of individual compared to

absolute fitness of rest of the population

Genetic Algorithms: Part 3

Roulette Wheel Selection

� Main idea: better individuals get higher chance

– Chances are proportional to fitness

� Implementation

– Assign to each individual a part of the roulette wheel

– Spin the wheel n times to select n individuals– Spin the wheel n times to select n individuals

Genetic Algorithms: Part 3

Roulette Wheel Selection

f1

f2
f7

f3

f4
f5

f6

m=7

Genetic Algorithms: Part 3

Roulette Wheel Algorithm

� is defined by the selection distribution:

– fitness proportionate

– ranking.

)(iPsel

� [a1, a2, …., aµ] by: (aµ = 1.0)

– m: population size

∑ ==
i

seli miiPa
1

,...,2,1)(

Genetic Algorithms: Part 3

Roulette Wheel Algorithm

Genetic Algorithms: Part 3

Roulette Wheel Algorithm

Chromosome Fitness pi ai

00110010001100 13477 0.265 0.265

11101100000001 12588 0.248 0.513

Fitness based weighting: assign distributions by fitness

11101100000001 12588 0.248 0.513

00101111001000 12363 0.243 0.756

00101111000110 12359 0.243 1.0

Genetic Algorithms: Part 3

Stochastic Universal Sampling

� Stochastic Universal Sampling (SUS) spins

the wheel once—but with M equally spaced

pointers, which are used to selected the M

parents.

Genetic Algorithms: Part 3

Stochastic Universal Sampling

f4
f1

f2f3

f4

m=4

Genetic Algorithms: Part 3

Stochastic Universal Sampling

Genetic Algorithms: Part 3

Fitness Proportionate Selection

� Problems with FPS

1. Premature Convergence

� One highly fit member can rapidly take over if rest of
population is much less fit

� Population converges to a local optimum

Too much exploitation; too few exploration� Too much exploitation; too few exploration

2. Almost no selection pressure when fitness
values close together

� Fitness scaling effects

– May behave differently on transposed versions of

same fitness function

– e.g. consider f(x) and y(x)=f(x)+10;

Genetic Algorithms: Part 3

Fitness Scaling Effects

Genetic Algorithms: Part 3

Fitness Proportionate Selection

� Scaling can fix last two problems

� Windowing:

– f’(i) = f(i) - β

– where β is worst fitness in this (last n) generations

� Sigma Scaling: � Sigma Scaling:

– f’(i) = max(f(i) - (µf - c⋅σf), 0)

– where

� µf is the mean of fitness values,

� σf is the standard deviation of the fitness values, and

� c is a constant, usually 2

– if f’(i) <0 then set f’(i)=0

Genetic Algorithms: Part 3

Ranking Selection

� Ordinal based method

� Attempt to remove problems of FPS by basing

selection probabilities on relative rather than

absolute fitness

� Population sorted by fitness� Population sorted by fitness

� Selection probabilities based on rank, not to

their actual fitness

� The actual fitness value is less important, it is

the rank in this order what matters

� Constant selection pressure

Genetic Algorithms: Part 3

Ranking Selection

� This imposes a sorting overhead on the

algorithm, but this is usually negligible

compared to the fitness evaluation time

� How to allocate probabilities to ranks� How to allocate probabilities to ranks

– can be any linear or non-linear function

– e.g. linear ranking selection (LRS)

Genetic Algorithms: Part 3

Linear Ranking

� s: is a parameterized factor, 1.0 < s ≤ 2.0s: is a parameterized factor, 1.0 < s ≤ 2.0

– measures advantage of best individual

– in generational GA s: no. of expected offspring

allotted to best

� µ is the mean of fitness values

Genetic Algorithms: Part 3

Linear Ranking

� Simple 3 member example

Genetic Algorithms: Part 3

Tournament Selection

� Ordinal based

� RWS and SUS uses info on whole population

– info may not be available

� population too large

� population distributed on a parallel system� population distributed on a parallel system

Genetic Algorithms: Part 3

Tournament Selection

� Relies on an ordering relation to rank any n

individuals

� Most widely used approach

� Tournament size k

if k large, more of the fitter individuals– if k large, more of the fitter individuals

– controls selection pressure

� k=2 : lowest selection pressure

� higher k increases selection pressure

Genetic Algorithms: Part 3

Tournament Selection

µ: population size k: tournament size

Assumes that a tournament

is held at this point

Survivor Selection

Genetic Algorithms: Part 3

Survivor Selection

� Also known as replacement

� Determines who survives into next generation

– reduces (m+l) to m

� m population size (also no. of parents)

� l no. of offspring at end of generation� l no. of offspring at end of generation

� several replacement strategies

Genetic Algorithms: Part 3

Survivor Selection

� Survivor selection can be divided into two

approaches:

– Age-Based Selection

� FIFO

� Replace random

– Fitness-Based Selection

� Elitism

� GENITOR

Genetic Algorithms: Part 3

Age-Based Replacement

� Fitness not taken into account

� Each inidividual exists for same number of

generations

– in SGA only for 1 generation

� e.g. create 1 offspring and insert into � e.g. create 1 offspring and insert into

population at each generation

– FIFO

– Replace random (not recommended)

Genetic Algorithms: Part 3

Fitness-Based Replacement

� Elitism

– Always keep the best or the best few of the of the

fittest solution so far

– Ensures that the best found solution (s) are never

lostlost

� GENITOR: a.k.a. “delete-worst”

– Rapid takeover: use with large populations or “no

duplicates” policy

– fast increase in population mean

– possible premature convergence

Glossary

Genetic Algorithms: Part 3

Glossary

� allele: a variant of a gene, i.e. the value of a

symbol in a specified position of the genotype.

� chromosome: synonymous to “genotype”.

� crossover: combination of two individuals to

form one or two new individuals.form one or two new individuals.

� fitness function: function giving the value of

an individual.

� generation: iteration of the basic loop of an

genetic algorithm.

Genetic Algorithms: Part 3

Glossary

� gene: an element of a genotype, i.e. one of the

symbols of a symbol string.

� genotype: a symbol string generating a

phenotype at the time of a decoding phase.

� individual: an instance of solution for a � individual: an instance of solution for a

problem dealt with by genetic algorithm.

� locus: position of a gene in the genotype.

� mutation: random modification of an

individual.

� search operator: synonymous to “variation

operator”.

Genetic Algorithms: Part 3

Glossary

� replacement operator: determines which

individuals of a population will be replaced by

the offspring. It thus makes it possible to create

the new population for the next generation.

� selection operator: determines how much � selection operator: determines how much

time a “parent” individual generates “offspring”

individuals.

� variation operator: operator modifying the

structure, the parameters of an individual, such

as the crossover and the mutation.

Genetic Algorithms: Part 3

Glossary

� phenotype: set of the observable appearances

of the genotype. More specifically, it is an

instance of solution for the problem dealt with,

expressed in its natural representation

obtained after decoding the genotype.obtained after decoding the genotype.

� population: the set of the individuals who

evolve simultaneously under the action of an

evolutionary algorithm.

� recombination: synonymous to “crossover”.

References

Genetic Algorithms: Part 3

References

� Eiben and Smith. Introduction to
Evolutionary Computing, Springer-Verlag,

New York, 2003.

� J. Dreo A. Petrowski, P. Siarry E. Taillard,

Metaheuristics for Hard Optimization, Metaheuristics for Hard Optimization,

Springer-Verlag, 2006.

The End

