# 8. Ant Colony Optimization8.1 Introduction

**Fall 2010** 

Instructor: Dr. Masoud Yaghini

# **Outline**

- Introduction
- Real Ants
- Artificial Ants
- References

# Introduction

# **Swarm Intelligence**

# Swarm intelligence (SI)

- is artificial intelligence based on the collective behavior of decentralized, self-organized systems.
- The expression was introduced by Gerardo Beni and Jing Wang in 1989.
- The natural examples of SI includes the behaviors of certain ants, honeybees, wasps, beetles, caterpillars, and termites

# **Swarm Intelligence**

# Example of swarm intelligence algorithms:

- Ant colony optimization
- Particle swarm optimization
- Stochastic diffusion search
- Swarm robotics

# **Ant Colony Optimization**

# Ant Colony Optimization (ACO)

- is inspired by the foraging behavior of ant colonies
- ACO algorithms are used for solving discrete optimization problems.
- ACO is one of the most successful examples of metaheuristic algorithms.

# **Ant Colony Optimization**

# Examples of ACO algorithms:

- Ant System (AS)
- Elitist Ant System (EAS)
- Rank-Based Ant System (ASrank)
- Min-Max Ant System (MMAS)
- Ant Colony System (ACS)
- Approximate Nondeterministic Tree Search (ANTS)
- Hyper-Cube Framework

# **ACO Brief History**

#### 1989 & 1990:

- Experiments with Argentine ants by Goss et al. &
   Deneuborg et al.
- The ants prefer the shortest path from the nest to the food source

#### 1991:

 Ant System (AS) was the first ACO algorithm presented for shortest paths by **Dorigo et. al.** (Milan, Italy)

#### 1998:

- Ant Colony Optimization is the name given by Dorigo
- A class of algorithms whose first member was AS.

# **Ant Colony Optimization**

 ACO algorithms can be used to solve both static and dynamic combinatorial optimization problems.

# **Ant Colony Optimization**

# Static problems

- are those in which the characteristics of the problem are given once and for all when the problem is defined, and do not change while the problem is being solved.
- An example of such problems is the TSP, in which city locations and their relative distances are part of the problem definition and do not change at run time.

# **Ant Colony Optimization**

# Dynamic problems

- are defined as a function of some quantities whose value is set by the dynamics of an underlying system.
- The problem instance changes therefore at run time and the optimization algorithm must be capable of adapting online to the changing environment.
- An example of this situation is network routing problems in which the data traffic and the network topology can vary in time.

| Problem type | Problem name        | Main references                                                                                                                                                                                                                                     |
|--------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Routing      | Traveling salesman  | Dorigo, Maniezzo, & Colorni (1991a,b, 1996)<br>Dorigo (1992)<br>Gambardella & Dorigo (1995)<br>Dorigo & Gambardella (1997a,b)<br>Stützle & Hoos (1997, 2000)<br>Bullnheimer, Hartl, & Strauss (1999c)<br>Cordón, de Viana, Herrera, & Morena (2000) |
|              | Vehicle routing     | Bullnheimer, Hartl, & Strauss (1999a,b)<br>Gambardella, Taillard, & Agazzi (1999)<br>Reimann, Stummer, & Doerner (2002)                                                                                                                             |
|              | Sequential ordering | Gambardella & Dorigo (1997, 2000)                                                                                                                                                                                                                   |

| Problem type | Problem name                                                                       | Main references                                                                                                                      |
|--------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Assignment   | Quadratic assignment                                                               | Maniezzo, Colorni, & Dorigo (1994)<br>Stützle (1997b)<br>Maniezzo & Colorni (1999)<br>Maniezzo (1999)<br>Stützle & Hoos (2000)       |
|              | Graph coloring                                                                     | Costa & Hertz (1997)                                                                                                                 |
|              | Generalized assignment<br>Frequency assignment<br>University course<br>timetabling | Lourenço & Serra (1998, 2002)<br>Maniezzo & Carbonaro (2000)<br>Socha, Knowles, & Sampels (2002)<br>Socha, Sampels, & Manfrin (2003) |

| Problem type | Problem name                              | Main references                                                                                                                                           |
|--------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scheduling   | Job shop Open shop Flow shop              | Colorni, Dorigo, Maniezzo, & Trubian (1994) Pfahringer (1996) Stützle (1998a)                                                                             |
|              | Total tardiness  Total weighted tardiness | Bauer, Bullnheimer, Hartl, & Strauss (2000)<br>den Besten, Stützle, & Dorigo (2000)<br>Merkle & Middendorf (2000, 2003a)<br>Gagné, Price, & Gravel (2002) |
|              | Project scheduling Group shop             | Merkle, Middendorf, & Schmeck (2000a, 2002)<br>Blum (2002a, 2003a)                                                                                        |

| Problem type | Problem name                            | Main references                                                             |
|--------------|-----------------------------------------|-----------------------------------------------------------------------------|
| Subset       | Multiple knapsack                       | Leguizamón & Michalewicz (1999)                                             |
|              | Max independent set                     | Leguizamón & Michalewicz (2000)                                             |
|              | Redundancy allocation                   | Liang & Smith (1999)                                                        |
|              | Set covering                            | Leguizamón & Michalewicz (2000)<br>Hadji, Rahoual, Talbi, & Bachelet (2000) |
|              | Weight constrained graph tree partition | Cordone & Maffioli (2001)                                                   |
|              | Arc-weighted <i>l</i> -cardinality tree | Blum & Blesa (2003)                                                         |
|              | Maximum clique                          | Fenet & Solnon (2003)                                                       |

| Problem type     | Problem name                        | Main references                                                                                                                                                                                                                        |
|------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Machine learning | Classification rules                | Parpinelli, Lopes, & Freitas (2002b)                                                                                                                                                                                                   |
|                  | Bayesian networks                   | de Campos, Gámez, & Puerta (2002b)                                                                                                                                                                                                     |
|                  | Fuzzy systems                       | Casillas, Cordón, & Herrera (2000)                                                                                                                                                                                                     |
| Network routing  | Connection-oriented network routing | Schoonderwoerd, Holland, Bruten, &<br>Rothkrantz (1996)<br>Schoonderwoerd, Holland, & Bruten (1997)<br>White, Pagurek, & Oppacher (1998)<br>Di Caro & Dorigo (1998d)<br>Bonabeau, Henavy, Guérin, Snyers, Kuntz, &<br>Theraulaz (1998) |
|                  | Connectionless network routing      | Di Caro & Dorigo (1997, 1998c,f)<br>Subramanian, Druschel, & Chen (1997)<br>Heusse, Snyers, Guérin, & Kuntz (1998)<br>van der Put (1998)                                                                                               |
|                  | Optical network routing             | Navarro Varela, & Sinclair (1999)                                                                                                                                                                                                      |

# **Real Ants**

# **Stigmergy**

- Ant colonies, in spite of the simplicity of their individuals, present a highly structured social organization.
- As a result of this organization, ant colonies can accomplish complex.
- Ants coordinate their activities via stigmergy

# **Stigmergy**

# Stigmergy

- is a form of indirect communication mediated by modifications of the environment.
- an individual modifies the environment
- other individuals respond to that change at a later time
- The environment mediates the communication among individuals
- A foraging ant deposits a chemical on the ground which increases the probability that other ants will follow the same path.

# **Pheromones**

#### Pheromones

- The communication among individuals, or between individuals and the environment, is based on the use of chemicals produced by the ants.
- These chemicals are called pheromones.
- Trail pheromone is a specific type of pheromone that some ants use for marking paths on the ground, for example, paths from food sources to the nest.

# **Double Bridge Experiments**

# Double Bridge Experiments

- Deneubourg and colleagues have shown that foraging ants can find the shortest path between their nest and a food source
- They used a double bridge connecting a nest of ants and a food source.
- They ran experiments varying the length of the two branches of the double bridge.

# **Double Bridge Experiments**



# **First Experiment**



# **Second Experiment**



# **Foraging behavior of Ants**



• 2 ants start with equal probability of going on either path.

# **Foraging behavior of Ants**



• The ant on shorter path has a shorter to-and-fro time from it's nest to the food.

# **Foraging behavior of Ants**



• The density of pheromone on the shorter path is higher because of 2 passes by the ant (as compared to 1 by the other).

# Foraging behavior of Ants



The next ant takes the shorter route.

# Foraging behavior of Ants



 Over many iterations, more ants begin using the path with higher pheromone, thereby further reinforcing it.

# **Foraging behavior of Ants**



• After some time, the shorter path is almost exclusively used.

# **Foraging behavior of Ants**



# **Inspiring Source of ACO**

 This collective trail-laying and trail-following behavior whereby an ant is influenced by a chemical trail left by other ants is the inspiring source of ACO.

# **Artificial Ants**

# **Artificial Ants**

- The double bridge experiments show clearly that ant colonies have a built-in optimization capability
- By the use of probabilistic rules based on local information they can find the shortest path between two points in their environment.
- It is possible to design artificial ants that, by moving on a graph modeling the double bridge, find the shortest path between the two nodes corresponding to the nest and to the food source.

# **Artificial Ants**

Consider this graph



 The graph consists of two nodes (1 and 2, representing the nest and the food respectively)

# **Artificial Ants**

- The nodes are connected by a short and a long arc
- In the example the long arc is r times longer than the short arc, where r is an integer number.
- We assume the time to be discrete (t = 1, 2, ...)
  and that at each time step each ant moves
  toward a neighbor node at constant speed of
  one unit of length per time unit.

- Ants add one unit of pheromone to the arcs they use.
- Ants move on the graph by choosing the path probabilistically:
  - P<sub>is</sub>(t) is the probability for an ant located in node i at time t to choose the short path, and
  - P<sub>il</sub>(t) the probability to choose the long path.
- These probabilities are a function of the pheromone trails  $\phi_{ia}$  that ants in node i

# **Artificial Ants**

# The probabilities

$$p_{is}(t) = \frac{\left[\varphi_{is}(t)\right]^{\alpha}}{\left[\varphi_{is}(t)\right]^{\alpha} + \left[\varphi_{il}(t)\right]^{\alpha}}$$

$$p_{il}(t) = \frac{\left[\varphi_{il}(t)\right]^{\alpha}}{\left[\varphi_{is}(t)\right]^{\alpha} + \left[\varphi_{il}(t)\right]^{\alpha}}$$

# **Artificial Ants**

 Trail update on the two branches is performed as follows:

$$\varphi_{is}(t) = \varphi_{is}(t-1) + p_{is}(t-1)m_i(t-1) + p_{js}(t-1)m_j(t-1),$$

$$(i = 1, j = 2; i = 2, j = 1),$$

$$\varphi_{il}(t) = \varphi_{il}(t-1) + p_{il}(t-1)m_i(t-1) + p_{jl}(t-r)m_j(t-r),$$

$$(i = 1, j = 2; i = 2, j = 1),$$

- Where m<sub>i</sub>(t) the number of ants on node i at time t, is given by

$$m_i(t) = p_{js}(t-1)m_j(t-1) + p_{jl}(t-r)m_j(t-r),$$
  
 $(i = 1, j = 2; i = 2, j = 1).$ 

# **Artificial Ants**

Another way of modeling:



- In this model each arc of the graph has the same length, and a longer branch is represented by a sequence of arcs.
- In the figure, for example, the long branch is twice as long as the short branch.

- Pheromone updates are done with one time unit delay on each arc.
- The two models are equivalent from a computational point of view, yet the second model permits an easier algorithmic implementation when considering graphs with many nodes.
- By setting the number of ants to 20, the branch length ratio to r=2, and the parameter α to 2, and t=100, the system converges rapidly toward the use of the short branch.



# **Artificial Ants**

• Let us consider a static, connected graph G = (N, A), where N is the set of nodes and A is the set of undirected arcs connecting them.



- Artificial ants whose behavior is a straightforward extension of the behavior of the real ants, while building a solution, may generate loops.
- As a consequence of the forward pheromone trail updating mechanism, loops tend to become more and more attractive and ants can get trapped in them.

- Artificial ants are given a limited form of memory in which they can store:
  - The paths they have followed so far, and
  - The cost of the links they have traversed.
- Via the use of memory, the ants can implement a number of useful behaviors

- The artificial ants have these behaviors:
  - Probabilistic solution construction biased by pheromone trails, without forward pheromone updating
  - 2. Deterministic backward path with **loop elimination** and with pheromone updating
  - 3. Evaluation of the quality of the solutions generated and use of the solution quality in determining the quantity of pheromone to deposit

# References

### References

M. Dorigo and T. Stützle. <u>Ant Colony</u>
 <u>Optimization</u>, MIT Press, Cambridge, 2004.

# The End