8. Ant Colony Optimization

8.1 Introduction
Outline

- Introduction
- Real Ants
- Artificial Ants
- References
Introduction
Swarm Intelligence

- **Swarm intelligence (SI)**
 - is artificial intelligence based on the collective behavior of decentralized, self-organized systems.
 - The expression was introduced by Gerardo Beni and Jing Wang in 1989.
 - The natural examples of SI includes the behaviors of certain ants, honeybees, wasps, beetles, caterpillars, and termites
Swarm Intelligence

- Example of swarm intelligence algorithms:
 - Ant colony optimization
 - Particle swarm optimization
 - Stochastic diffusion search
 - Swarm robotics
Ant Colony Optimization (ACO)

- is inspired by the foraging behavior of ant colonies
- ACO algorithms are used for solving discrete optimization problems.
- ACO is one of the most successful examples of metaheuristic algorithms.
Ant Colony Optimization

Examples of ACO algorithms:
- Ant System (AS)
- Elitist Ant System (EAS)
- Rank-Based Ant System (ASrank)
- Min-Max Ant System (MMAS)
- Ant Colony System (ACS)
- Approximate Nondeterministic Tree Search (ANTS)
- Hyper-Cube Framework
Ant Colony Optimization: Part 1

ACO Brief History

- **1989 & 1990:**
 - Experiments with Argentine ants by Goss et al. & Deneuborg et al.
 - The ants prefer the shortest path from the nest to the food source

- **1991:**
 - Ant System (AS) was the first ACO algorithm presented for shortest paths by Dorigo et. al. (Milan, Italy)

- **1998:**
 - Ant Colony Optimization is the name given by Dorigo
 - A class of algorithms whose first member was AS.
Ant Colony Optimization

- ACO algorithms can be used to solve both **static** and **dynamic** combinatorial optimization problems.
Ant Colony Optimization

- **Static problems**
 - are those in which the characteristics of the problem are given once and for all when the problem is defined, and do not change while the problem is being solved.
 - An example of such problems is the TSP, in which city locations and their relative distances are part of the problem definition and do not change at run time.
Ant Colony Optimization: Part 1

Ant Colony Optimization

- **Dynamic problems**
 - are defined as a function of some quantities whose value is set by the dynamics of an underlying system.
 - The problem instance changes therefore at run time and the optimization algorithm must be capable of adapting online to the changing environment.
 - An example of this situation is **network routing problems** in which the data traffic and the network topology can vary in time.
Ant Colony Optimization: Part 1

ACO Applications

<table>
<thead>
<tr>
<th>Problem type</th>
<th>Problem name</th>
<th>Main references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing</td>
<td>Traveling salesman</td>
<td>Dorigo, Maniezzo, & Colomi (1991a,b, 1996)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dorigo (1992)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gambardella & Dorigo (1995)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dorigo & Gambardella (1997a,b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stützle & Hoos (1997, 2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bullnheimer, Hartl, & Strauss (1999c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cordón, de Viana, Herrera, & Morena (2000)</td>
</tr>
<tr>
<td>Vehicle routing</td>
<td></td>
<td>Bullnheimer, Hartl, & Strauss (1999a,b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gambardella, Taillard, & Agazzi (1999)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reimann, Stummer, & Doerner (2002)</td>
</tr>
</tbody>
</table>
Ant Colony Optimization: Part 1

ACO Applications

<table>
<thead>
<tr>
<th>Problem type</th>
<th>Problem name</th>
<th>Main references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment</td>
<td>Quadratic assignment</td>
<td>Maniezzo, Colorni, & Dorigo (1994)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stützle (1997b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maniezzo & Colorni (1999)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maniezzo (1999)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stützle & Hoos (2000)</td>
</tr>
<tr>
<td>Graph coloring</td>
<td></td>
<td>Costa & Hertz (1997)</td>
</tr>
<tr>
<td>Frequency assignment</td>
<td></td>
<td>Maniezzo & Carbonaro (2000)</td>
</tr>
<tr>
<td>University course</td>
<td></td>
<td>Socha, Knowles, & Sampels (2002)</td>
</tr>
<tr>
<td>timetabling</td>
<td></td>
<td>Socha, Sampels, & Manfrin (2003)</td>
</tr>
</tbody>
</table>
ACO Applications

<table>
<thead>
<tr>
<th>Problem type</th>
<th>Problem name</th>
<th>Main references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduling</td>
<td>Job shop</td>
<td>Cololini, Dorigo, Maniezzo, & Trubian (1994)</td>
</tr>
<tr>
<td></td>
<td>Open shop</td>
<td>Pfahringer (1996)</td>
</tr>
<tr>
<td></td>
<td>Flow shop</td>
<td>Stützle (1998a)</td>
</tr>
<tr>
<td></td>
<td>Total tardiness</td>
<td>Bauer, Bullnheimer, Hartl, & Strauss (2000)</td>
</tr>
<tr>
<td></td>
<td>Total weighted tardiness</td>
<td>den Besten, Stützle, & Dorigo (2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Merkle & Middendorf (2000, 2003a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gagné, Price, & Gravel (2002)</td>
</tr>
<tr>
<td></td>
<td>Project scheduling</td>
<td>Merkle, Middendorf, & Schmeck (2000a, 2002)</td>
</tr>
<tr>
<td></td>
<td>Group shop</td>
<td>Blum (2002a, 2003a)</td>
</tr>
</tbody>
</table>
Ant Colony Optimization: Part 1

ACO Applications

<table>
<thead>
<tr>
<th>Problem type</th>
<th>Problem name</th>
<th>Main references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subset</td>
<td>Multiple knapsack</td>
<td>Leguizamón & Michalewicz (1999)</td>
</tr>
<tr>
<td></td>
<td>Max independent set</td>
<td>Leguizamón & Michalewicz (2000)</td>
</tr>
<tr>
<td></td>
<td>Redundancy allocation</td>
<td>Liang & Smith (1999)</td>
</tr>
<tr>
<td></td>
<td>Set covering</td>
<td>Leguizamón & Michalewicz (2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hadjii, Rahoual, Talbi, & Bachelet (2000)</td>
</tr>
<tr>
<td></td>
<td>Weight constrained graph tree partition</td>
<td>Cordone & Maffioli (2001)</td>
</tr>
<tr>
<td></td>
<td>Arc-weighted k-cardinality tree</td>
<td>Blum & Blesa (2003)</td>
</tr>
</tbody>
</table>
Ant Colony Optimization: Part 1

ACO Applications

<table>
<thead>
<tr>
<th>Problem type</th>
<th>Problem name</th>
<th>Main references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine learning</td>
<td>Classification rules</td>
<td>Parpinelli, Lopes, & Freitas (2002b)</td>
</tr>
<tr>
<td></td>
<td>Bayesian networks</td>
<td>de Campos, Gámez, & Puerta (2002b)</td>
</tr>
<tr>
<td></td>
<td>Fuzzy systems</td>
<td>Casillas, Cordón, & Herrera (2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schoonderwoerd, Holland, & Bruten (1997)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>White, Pagurek, & Oppacher (1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Di Caro & Dorigo (1998d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bonabeau, Henave, Guérin, Snyers, Kuntz, & Theraulaz (1998)</td>
</tr>
<tr>
<td></td>
<td>Connectionless network routing</td>
<td>Di Caro & Dorigo (1997, 1998c,f)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subramanian, Druschel, & Chen (1997)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heusse, Snyers, Guérin, & Kuntz (1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>van der Put (1998)</td>
</tr>
<tr>
<td></td>
<td>Optical network routing</td>
<td>Navarro Varela, & Sinclair (1999)</td>
</tr>
</tbody>
</table>
Real Ants
Ant colonies, in spite of the simplicity of their individuals, present a highly structured social organization. As a result of this organization, ant colonies can accomplish complex tasks. Ants coordinate their activities via stigmergy.
Stigmergy

- Stigmergy is a form of *indirect communication* mediated by modifications of the environment.
- An individual modifies the environment
- Other individuals respond to that change at a later time
- The environment mediates the communication among individuals
- A foraging ant deposits a chemical on the ground which increases the probability that other ants will follow the same path.
Pheromones

- The communication among individuals, or between individuals and the environment, is based on the use of chemicals produced by the ants.
- These chemicals are called **pheromones**.
- **Trail pheromone** is a specific type of pheromone that some ants use for marking paths on the ground, for example, paths from food sources to the nest.
Double Bridge Experiments

- Deneubourg and colleagues have shown that foraging ants can find the shortest path between their nest and a food source.
- They used a double bridge connecting a nest of ants and a food source.
- They ran experiments varying the length of the two branches of the double bridge.
Ant Colony Optimization: Part 1

Double Bridge Experiments
First Experiment
Ant Colony Optimization: Part 1

Second Experiment
• 2 ants start with equal probability of going on either path.
The ant on shorter path has a shorter to-and-fro time from its nest to the food.
The density of pheromone on the shorter path is higher because of 2 passes by the ant (as compared to 1 by the other).
Foraging behavior of Ants

- The next ant takes the shorter route.
Over many iterations, more ants begin using the path with higher pheromone, thereby further reinforcing it.
After some time, the shorter path is almost exclusively used.
Foraging behavior of Ants
Inspiring Source of ACO

- This collective trail-laying and trail-following behavior whereby an ant is influenced by a chemical trail left by other ants is the inspiring source of ACO.
Artificial Ants
Artificial Ants

- The **double bridge experiments** show clearly that ant colonies have a built-in optimization capability.
- By the use of probabilistic rules based on local information they can find the shortest path between two points in their environment.
- It is possible to design **artificial ants** that, by moving on a graph modeling the double bridge, find the shortest path between the two nodes corresponding to the nest and to the food source.
Artificial Ants

- Consider this graph

- The graph consists of two nodes (1 and 2, representing the nest and the food respectively)
Artificial Ants

- The nodes are connected by a short and a long arc.
- In the example the long arc is \(r \) times longer than the short arc, where \(r \) is an integer number.
- We assume the time to be discrete (\(t = 1, 2, \ldots \)) and that at each time step each ant moves toward a neighbor node at constant speed of one unit of length per time unit.
Ant Colony Optimization: Part 1

Artificial Ants

- Ants add **one unit of pheromone** to the arcs they use.
- Ants move on the graph by choosing the path probabilistically:
 - $P_{is}(t)$ is the probability for an ant located in node i at time t to choose the short path, and
 - $P_{il}(t)$ the probability to choose the long path.
- These probabilities are a function of the pheromone trails φ_{ia} that ants in node i
Artificial Ants

- The probabilities

\[p_{is}(t) = \frac{[\phi_{is}(t)]^\alpha}{[\phi_{is}(t)]^\alpha + [\phi_{il}(t)]^\alpha} \]

\[p_{il}(t) = \frac{[\phi_{il}(t)]^\alpha}{[\phi_{is}(t)]^\alpha + [\phi_{il}(t)]^\alpha} \]
Ant Colony Optimization: Part 1

Artificial Ants

- Trail update on the two branches is performed as follows:

\[
\varphi_{is}(t) = \varphi_{is}(t - 1) + p_{is}(t - 1)m_i(t - 1) + p_{js}(t - 1)m_j(t - 1),
\]

\[(i = 1, j = 2; i = 2, j = 1),\]

\[
\varphi_{il}(t) = \varphi_{il}(t - 1) + p_{il}(t - 1)m_i(t - 1) + p_{jl}(t - r)m_j(t - r),
\]

\[(i = 1, j = 2; i = 2, j = 1),\]

- Where \(m_i(t)\) the number of ants on node \(i\) at time \(t\), is given by

\[
m_i(t) = p_{js}(t - 1)m_j(t - 1) + p_{jl}(t - r)m_j(t - r),
\]

\[(i = 1, j = 2; i = 2, j = 1).\]
Artificial Ants

- Another way of modeling:

- In this model each arc of the graph has the same length, and a longer branch is represented by a sequence of arcs.

- In the figure, for example, the long branch is twice as long as the short branch.
Artificial Ants

- Pheromone updates are done with one time unit delay on each arc.
- The two models are equivalent from a computational point of view, yet the second model permits an easier algorithmic implementation when considering graphs with many nodes.
- By setting the number of ants to 20, the branch length ratio to $r=2$, and the parameter α to 2, and $t=100$, the system converges rapidly toward the use of the short branch.
Artificial Ants

![Graph showing choice probabilities over number of iterations.]

- Solid line: $p(1,2)$
- Dotted line: $p(1,3)$
- Dashed line: $p(2,3)$
Ant Colony Optimization: Part 1

Artificial Ants

- Let us consider a static, connected graph $G = (N, A)$, where N is the set of nodes and A is the set of undirected arcs connecting them.
Artificial Ants

- **Artificial ants** whose behavior is a straightforward extension of the behavior of the real ants, while building a solution, may generate loops.

- As a consequence of the forward pheromone trail updating mechanism, loops tend to become more and more attractive and ants can get trapped in them.
Artificial Ants

- Artificial ants are given a **limited form of memory** in which they can store:
 - The **paths** they have followed so far, and
 - The **cost** of the links they have traversed.

- Via the use of memory, the ants can implement a number of useful behaviors
Artificial Ants

The artificial ants have these behaviors:

1. Probabilistic solution construction biased by pheromone trails, without forward pheromone updating
2. Deterministic backward path with loop elimination and with pheromone updating
3. Evaluation of the quality of the solutions generated and use of the solution quality in determining the quantity of pheromone to deposit
References
References
