8. Ant Colony Optimization8.2 Simple Ant Colony Optimization

Fall 2010

Instructor: Dr. Masoud Yaghini

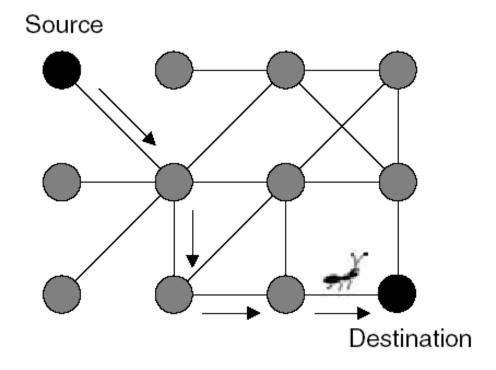
Outline

- Simple Ant Colony Optimization (S-ACO)
- Experiments with S-ACO
- References

Simple Ant Colony Optimization (S-ACO)

S-ACO

 The simple ACO algorithm (S-ACO) can be used to find a solution to the shortest path problem defined on the graph.



S-ACO

- A complete cycle of S-ACO:
 - Forward ants and solution construction
 - Backward ants and loop elimination
 - Pheromone updates
 - Pheromone evaporation

Forward ants and solution construction

- There are two working modes for the ants:
 - forwards
 - backwards
- Each ant builds, starting from the source node, a solution to the problem by applying a stepby-step decision policy.
- The ants memory allows them to retrace the path it has followed while searching for the destination node
- Pheromones are only deposited in backward mode.

Forward ants and solution construction

- Assume a connected graph G = (N, A).
- Associated with each edge (i, j) of the graph there is a variable τ_{ij} termed **artificial** pheromone trail.
- Every artificial ant is capable of "marking" an edge with pheromone and "smelling" (reading) the pheromone on the trail.
- At the beginning of the search process, a constant amount of pheromone (e.g., τ_{ij} =1) is assigned to all the arcs.

Forward ants and solution construction

• An ant k located at node i uses the pheromone trail $\tau_{ij}(t)$ to compute the probability of choosing j as next node:

$$p_{ij}^{k} = \begin{cases} \frac{\tau_{ij}^{\alpha}}{\sum_{j \in N_{i}^{k}} \tau_{ij}^{\alpha}}, & \text{if } j \in N_{i}^{k} \\ 0, & \text{if } j \notin N_{i}^{k} \end{cases}$$

- Where
 - $-N_i^k$ is the neighborhood of ant k in node i.
 - $-\alpha$ is a parameter that controls the relative weight of pheromone trail

The neighborhood of ant k in node i

- The neighborhood of a node i contains all the nodes directly connected to node i in the graph G = (N, A), except for the predecessor of node i (i.e., the last node the ant visited before moving to i).
- In this way the ants avoid returning to the same node they visited immediately before node *i*.
- Only in case N_i^k is empty, which corresponds to a dead end in the graph, node i's predecessor is included into N_i^k .

Forward ants and solution construction

- Ants use differences paths.
- Therefore the time step at which ants reach the destination node may differ from ant to ant.
- Ants traveling on shorter paths will reach their destinations faster.

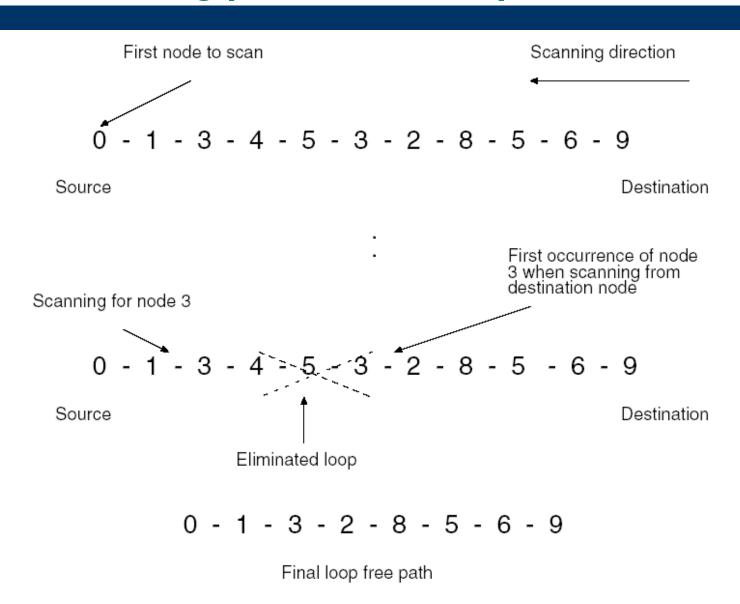
Backward ants and loop elimination

- When reaching the destination node,
 - the ant switches from the forward mode to the backward mode
- Before moving backward on their memorized path, they eliminate any loops from it has built while searching for its destination node.
- While moving backwards, the ants leave pheromones on the arcs they traversed.

Loop elimination

- Loop elimination can be done by iteratively scanning the node identifiers position by position starting from the source node
- For the node at the *i-th* position, the path is scanned starting from the destination node until the first occurrence of the node is encountered
- If we have j > i, the subpath from position i + 1 to position j corresponds to a loop and can be eliminated.

The scanning process for loop elimination



Pheromone Update

• During its return travel to the source, the k-th ant deposits an amount $\Delta \tau^k$ of pheromone on arcs it has visited.

$$\tau_{ij} \leftarrow \tau_{ij} + \Delta \tau^k$$

- By using this rule, the probability increases that forthcoming ants will use this arc.
- An important aspect is the choice of $\Delta \tau^k$.

Pheromone Update

Type of pheromone update:

The same constant value

- The same constant value for all the ants.
- Ants which have detected a shorter path can deposit pheromone earlier than ants traveling on a longer path.

Function of the solution quality

- The ants evaluate the cost of the paths they have traversed.
- The shorter paths will receive a greater deposit of pheromones.

Pheromone evaporation

Evaporation

 To avoid premature convergence pheromone evaporation is done

Convergence

- when the probability of selecting the arcs of particular path becomes close to 1
- An evaporation rule will be tied with the pheromones, which will reduce the chance for poor quality solutions.

Pheromone evaporation

 After each ant k has moved to the next node, the pheromones evaporate by the following equation to all the arcs:

$$\tau_{ij} \leftarrow (1-\rho)\tau_{ij}, \ \forall (i,j) \in A$$

- where $\rho \in (0,1]$ is a parameter.

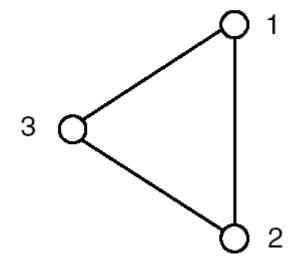
S-ACO importance aspects

- S-ACO importance aspects:
 - Number of ants
 - The value of α
 - Pheromone evaporation rate (ρ)
 - Type of pheromone update

Experiments with S-ACO

First Experiments with S-ACO

- The experiments were run using the double bridge
- In this model, each arc of the graph has the same length, and a longer branch is represented by a sequence of arcs.



First Experiments

1. First case:

- Different values for the number m of ants
- Ants depositing a constant amount of pheromone on the visited arcs ($\Delta \tau^k$ =constant)

Second case:

- Different values for the number m of ants
- Ants depositing an amount of pheromone is $\Delta \tau^k = 1/L^k$, where L^k is the length of ant k's path

First Experiments

- For each experiment we ran 100 trials and each trial was stopped after each ant had moved 1000 steps (moving from one node to the next).
- Evaporation was set to $\rho = 0$
- The parameter α was set to 2
- At the end of the trial we checked whether the pheromone trail was higher on the short or on the long path.

Results of First Experiments

 Percentage of trials in which S-ACO converged to the long path

m	1	2	4	8	16	32	64	128	256	512
without path length	50	42	26	29	24	18	3	2	1	0
with path length	18	14	8	0	0	0	0	0	0	0

• The results obtained in experiment 2 with pheromone updates based on solution quality are much better.

Influence of the parameter α

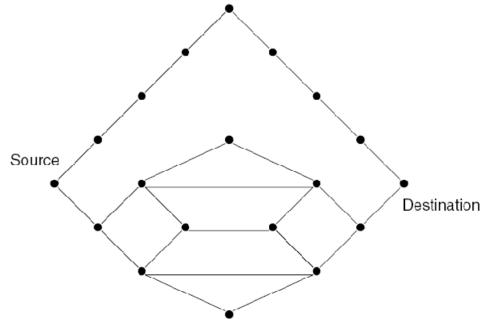
- In additional experiments, we examined the influence of the parameter α on the convergence behavior of S-ACO
- Investigating the cases where a was changed in step sizes of 0.25 from 1 to 2.
 - In the first case we found that increasing α had a negative effect on the convergence behavior
 - In the **second case** the results were rather **independent** of the particular value of α .

First Experiments

- The results with S-ACO indicate that differential path length alone can be enough to let S-ACO converge to the optimal solution on small graphs
 - at the price of having to use large colony sizes,
 which results in long simulation times.

Second Experiments with S-ACO

- In a second set of experiments, we studied the influence that pheromone trail evaporation.
- Experiments were run using the extended double bridge graph



Second Experiments

- The ants deposit an amount of pheromone that is the inverse of their path length (i.e., $\Delta \tau^k = 1/L^k$)
- Before depositing pheromone, ants eliminate loops

Second Experiments

 We ran experiments with S-ACO and different settings for the evaporation rate:

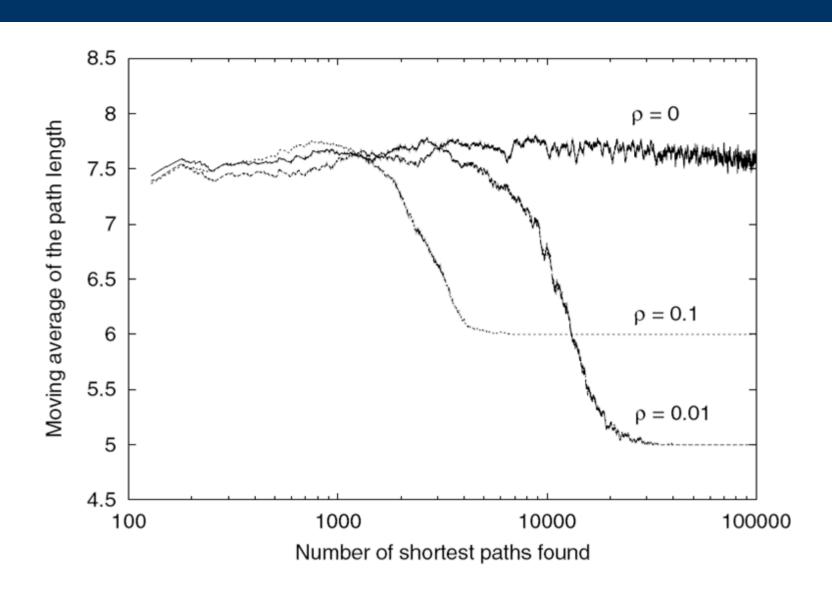
$$\rho \in \{0, 0.01, 0.1\}$$

• $\alpha = 1$ and m = 128 in all experiments.

Plot of Second Experiments

- To evaluate the behavior of the algorithm we observe the development of the path lengths found by the ants.
- We plot the moving averages of the path lengths after loop elimination (moving averages are calculated using the 4 most recent paths found by the ants).
- In the graph of figure a point is plotted each time an ant has completed a journey from the source to the destination and back

Number of shortest paths found



Pheromone Evaporation

- If $\rho = 0$, no pheromone evaporation takes place.
- An evaporation rate of $\rho = 0.1$ is rather large,
 - Because evaporation takes place at each iteration of the S-ACO algorithm
 - After ten iterations, which corresponds to the smallest number of steps that an ant needs to build the shortest path and to come back to the source, roughly 65% of the pheromone on each arc evaporates,
- While with $\rho = 0.01$ this evaporation is reduced to around 10%.

Results: No evaporation

- If no evaporation is used, the algorithm does not converge
- It can be seen by the fact that the moving average has approximately the value 7.5, which does not correspond to the length of any path
- With these parameter settings, this result typically does not change if the run lasts a much higher number of iterations.

Results: With Evaporation

- With pheromone evaporation, the behavior of S-ACO is significantly different.
- After a short transitory phase, S-ACO converges to a single path
- For p = 0.01 the value of shortest path is 5
- For p = 0.1 the path of length is 6

Results: Pheromone Updates

- Without pheromone updates based on solution quality, S-ACO performance is much worse.
- The algorithm converges very often to the suboptimal solution of length 8
- The larger the parameters α or p, the faster S-ACO converges to this suboptimal solution.

Results: Pheromone Evaporation Rate

- The pheromone evaporation rate p can be critical.
 - when evaporation was set to a value that was too high,
 - S-ACO often converged to suboptimal paths
- For example, in fifteen trials with p set to 0.2, S-ACO converged:
 - once to a path of length 8
 - once to a path of length 7
 - twice to a path of length 6
- Setting p to 0.01 S-ACO converged to the shortest path in all trials.

Results: Values of α

- Large values of α generally result in a worse behavior of S-ACO
- Because they excessively emphasize the initial random fluctuations.

References

References

M. Dorigo and T. Stützle. <u>Ant Colony</u>
 <u>Optimization</u>, MIT Press, Cambridge, 2004.

The End