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The Traveling Salesman Problem

� The traveling salesman problem is an extensively

studied problem in the literature. 

� The TSP also plays an important role in ACO 

research: the first ACO algorithm, called Ant 

System, as well as many of the ACO algorithms System, as well as many of the ACO algorithms 

proposed subsequently, was first tested on the TSP.
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The Traveling Salesman Problem

� The reasons for the choice of the TSP:

– it is an important NP-hard optimization problem that 

arises in several applications 

– it is a problem to which ACO algorithms are easily 

appliedapplied

– it is easily understandable

– it is a standard test bed for new algorithmic ideas—a 

good performance on the TSP is often taken as a proof of 

their usefulness

– the most efficient ACO algorithms for the TSP were also 

found to be among the most efficient ones for a wide 

variety of other problems
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The Traveling Salesman Problem

� The traveling salesman problem is the problem 

faced by:

– a salesman who, starting from his home town, 

– wants to find a shortest possible trip through a given set 

of customer cities, of customer cities, 

– visiting each city once 

– finally returning home.
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The Traveling Salesman Problem

� The TSP can be represented by a complete weighted 

graph G =(N, A) with:

– N : the set of n = |N| nodes (cities)

– A : the set of arcs fully connecting the nodes. 

� Each arc is assigned a weight d which represents � Each arc is assigned a weight dij which represents 

the distance between cities i and j. 

� The TSP is the problem of finding a minimum 

length Hamiltonian circuit of the graph, where a 

Hamiltonian circuit is a closed walk (a tour) visiting 

each node of G exactly once. 
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The Traveling Salesman Problem

� We may distinguish between:

– Symmetric TSPs, where the distances between the cities 

are independent of the direction of traversing the arcs, 

that is, dij = dji for every pair of nodes, and 

– Asymmetric TSP (ATSP), where at least for one pair of Asymmetric TSP (ATSP), where at least for one pair of 

nodes i, j we have dij ≠ dji
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The Traveling Salesman Problem

� A solution to an instance of the TSP can be 

represented as a permutation of the city indices

� This permutation is cyclic, that is, the absolute 

position of a city in a tour is not important at all but 

only the relative order is important only the relative order is important 
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Traveling Salesman Problem 

� The only constraint in the TSP is that all cities 

have to be visited and that each city is visited at 

most once. 

� This constraint is enforced if an ant at each 

construction step chooses the next city only among construction step chooses the next city only among 

those it has not visited yet 

� The feasible neighborhood of an ant k in city i, 

where k is the ant’s identifier, comprises all cities 

that are still unvisited.
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Traveling Salesman Problem 

� An optimal solution to the TSP is a permutation π of 

the node indices {1, 2, . . ., n} such that the length 

f(π)  is minimal, where f(π)  is given by:
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Traveling Salesman Problem 

� We try to highlight differences in performance 

among ACO algorithms by running computational 

experiments on instances available from the 

TSPLIB benchmark library, which is accessible 

on the Web on the Web 

� TSPLIB instances have been used in a number of 

influential studies of the TSP

� Most of the TSPLIB instances are geometric TSP 

instances, that is, they are defined by the 

coordinates of a set of points and the distance 

between these points is computed



Ant Colony Optimization: Part 4

Traveling Salesman Problem 

� This figure shows the TSP instance att532, which comprises 

532 cities in the United States.
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Traveling Salesman Problem 

� This figure shows instance pcb1173, which represents the 

location of 1173 holes to be drilled on a printed circuit 

board. 
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ACO Algorithms for TSP

� The construction graph GC =(C, L), where the set L

fully connects the components C, is identical to the 

problem graph, that is C = N and L = A

� Each connection has a weight which corresponds to 

the distance dij between nodes i and j. the distance dij between nodes i and j. 

� The states of the problem are the set of all possible 

tours.
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ACO Algorithms for TSP

� The pheromone trails are associated with arcs and 

therefore τij in the TSP refer to the desirability of 

visiting city j directly after i. 

� The heuristic information ηij is typically inversely 

proportional to the distance between cities i and j, a proportional to the distance between cities i and j, a 

straightforward choice being ηij =1/dij. 

� In fact, this is also the heuristic information used in 

most ACO algorithms for the TSP.
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ACO Algorithms for TSP

� Tours are constructed by applying the following 

simple constructive procedure to each ant: 

1. choose, according to some criterion, a start city at 

which the ant is positioned; 

2. use pheromone and heuristic values to 2. use pheromone and heuristic values to 

probabilistically construct a tour by iteratively 

adding cities that the ant has not visited yet, until 

all cities have been visited; and 

3. go back to the initial city.
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Pheromone trails and heuristic information

� The probabilistic decision is a function of 

pheromone trails and heuristic values 

� After all ants have completed their tour, they may 

deposit pheromone on the tours they have followed.
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ACO Algorithmic scheme for TSP

� The algorithmic scheme:
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ACO Algorithmic scheme for TSP

� After initializing the parameters and the pheromone 

trails, a ACO algorithm iterate through a main loop

� First, all of the ants’ tours are constructed

� Then, an optional phase takes place in which the 

ants’ tours are improved by the application of some ants’ tours are improved by the application of some 

local search algorithm

� Finally, the pheromone trails are updated. 

– This last step involves pheromone evaporation and the 

update of the pheromone trails by the ants to reflect their 

search experience. 
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ACO Algorithmic scheme for TSP

� The application of a local search algorithm is a 

typical example of a possible daemon action in 

ACO algorithms.

� We will see that, in some cases, before adding 

pheromone, the tours constructed by the ants may pheromone, the tours constructed by the ants may 

be improved by the application of a local search 

procedure.
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ACO Algorithms for TSP

� The first ACO algorithm, Ant System (AS), was 

introduced using the TSP as an example application.

� AS achieved encouraging initial results

� The extensions of AS that significantly improved 

performance:performance:

– Elitist AS

– Rank-based AS 

– MAX–MIN AS
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ACO Algorithms for TSP

� Similarity between AS and of these extensions:

– the same solution construction procedure

– the same pheromone evaporation procedure

� The main differences between AS and these 

extensions are:extensions are:

– the way the pheromone update is performed

– some additional details in the management of the 

pheromone trails
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ACO Algorithms for TSP

� A few other ACO algorithms that more substantially 

modify the features of AS were also proposed in the 

literature. 

� These extensions include:

– Ant-Q– Ant-Q

– Ant Colony System (ACS)

– Approximate Nondeterministic Tree Search (ANTS)

– Hyper-cube framework for ACO
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ACO Algorithms

� We note that not all available ACO algorithms have 

been applied to the TSP

� Exceptions are:

– ANTS algorithm

– Hyper-cube framework– Hyper-cube framework
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ACO Algorithms



Ant System
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Ant System

� Initially, three different versions of AS were 

proposed:

– Ant-density

– Ant-quantity

– Ant-cycle– Ant-cycle
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Ant System

� Ant-density and ant-quantity

– In the ant-density and ant-quantity versions the ants 

updated the pheromone directly after a move from one 

city to an adjacent city 

– These two variants were abandoned because of their These two variants were abandoned because of their 

low-quality performance.
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Ant System

� Ant-cycle

– In the ant-cycle version the pheromone update was only 

done after all the ants had constructed the tours and the 

amount of pheromone deposited by each ant was set to be 

a function of the tour quality. 

– Nowadays, when referring to AS, one actually refers to 

ant-cycle.

� The two main phases of the AS algorithm:

– the ants’ solution construction and 

– the pheromone update 
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Initialization the Pheromone Trails

� If the initial pheromone values are too low

– the search is quickly biased by the first tours generated by 

the ants, which in general leads toward the exploration of 

lesser zones of the search space. 

� If the initial pheromone values are too high� If the initial pheromone values are too high

– many iterations are lost waiting until pheromone 

evaporation reduces enough pheromone values, so that 

pheromone added by ants can start to bias the search.
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Initialization the Pheromone Trails

� In AS the pheromone trails is to set them to a value 

slightly higher than the expected amount of 

pheromone deposited by the ants in one iteration

� A rough estimate of this value can be obtained by 

setting, , τij= τ0 =m/Cnn, setting, , τij= τ0 =m/Cnn, 

– where m is the number of ants, and

– Cnn is the length of a tour generated by the nearest-

neighbor heuristic
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Tour Construction 

� In AS, m (artificial) ants concurrently build a tour 

of the TSP. 

� Initially, ants are put on randomly chosen cities. 

� Random proportional rule

At each construction step, ant k applies a probabilistic – At each construction step, ant k applies a probabilistic 

action choice rule, called random proportional rule, to 

decide which city to visit next.
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Tour Construction 

� In particular, the probability with which ant k, 

currently at city i, chooses to go to city j is:

– ηij=1/dij is a heuristic value 

– α and β are two parameters which determine the relative 

influence of the pheromone trail and the heuristic 

information

– Ni
k is the feasible neighborhood of ant k when being at 

city i, that is, the set of cities that ant k has not visited yet 

(the probability of choosing a city outside Ni
k is 0). 
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Tour Construction 

� If α = 0, 

– the closest cities are more likely to be selected: this 

corresponds to a classic stochastic greedy algorithm. 

� If β = 0, 

– only pheromone is used, without any heuristic bias. – only pheromone is used, without any heuristic bias. 

– This generally leads to rather poor results

� If α > 1,

– it leads to the rapid emergence of a situation in which all 

the ants follow the same path and construct the same tour, 

which, in general, is strongly suboptimal
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Tour Construction 

� Each ant k maintains a memory Mk which contains 

the cities already visited, in the order they were 

visited. 

� This memory is used:

– to define the feasible neighborhood – to define the feasible neighborhood 

– to compute the length of the tour Tk it generated and 

– to retrace the path to deposit pheromone.
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Tour Construction 

� There are two different ways of implementing 

solution construction:

– Parallel solution construction: at each construction step 

all the ants move from their current city to the next one

– Sequential implementation: an ant builds a complete – Sequential implementation: an ant builds a complete 

tour before the next one starts to build another one. 

� Both choices for the implementation of the tour 

construction are equivalent in the sense that they do 

not significantly influence the algorithm’s behavior. 
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Update of Pheromone Trails

� After all the ants have constructed their tours, the 

pheromone trails are updated, by:

– First lowering the pheromone value on all arcs by a 

pheromone evaporation rate, and 

– Then adding pheromone on the arcs the ants have – Then adding pheromone on the arcs the ants have 

crossed in their tours. 



Ant Colony Optimization: Part 4

Update of Pheromone Trails

� Pheromone evaporation is implemented by: 

– where 0 < ρ ≤ 1 is the pheromone evaporation rate. 

� The parameter ρ is used to avoid unlimited 

accumulation of the pheromone trails and it enables 

the algorithm to ‘‘forget’’ bad decisions previously 

taken.



Ant Colony Optimization: Part 4

Update of Pheromone Trails

� After evaporation, all ants deposit pheromone on 

the arcs they have crossed in their tour:

� where ∆τk
ij is the amount of pheromone ant k 

deposits on the arcs it has visited. 
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Update of Pheromone Trails

� ∆τk
ij is defined as follows:

� where Ck is the length of the tour Tk built by the k-

th ant, is computed as the sum of the lengths of the 

arcs belonging to Tk.

� The better an ant’s tour is, the more pheromone the 

arcs belonging to this tour receive. 
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Update of Pheromone Trails

� In general, arcs that are used by many ants and 

which are part of short tours, receive more 

pheromone

– therefore more likely to be chosen by ants in future 

iterations of the algorithm.iterations of the algorithm.
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Parameter values for AS

� Good parameter values for the AS are:

– The parameter α: α = 1

– The parameter β: β = 2 to 5

– Evaporation rate: ρ = 0.5

– The number of ants: m = n (the number of cities)– The number of ants: m = n (the number of cities)

– The initialization value of pheromone trial: τ0 = m/Cnn
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Elitist Ant System

� Elitist Ant System (EAS)

– A first improvement on AS, called the elitist strategy for 

Ant System

– It was introduced in Dorigo (1992) and Dorigo et al., 

(1991a, 1996).(1991a, 1996).

� The idea is to provide strong additional 

reinforcement to the arcs belonging to the best tour 

found since the start of the algorithm

� This tour is denoted as Tbs (best-so-far tour)

� An additional pheromone deposited by an additional 

ant called best-so-far ant
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Update of Pheromone Trails 

� The additional reinforcement of tour Tbs is achieved 

by adding a quantity e / Cbs to its arcs, 

– where e is a parameter that defines the weight given to 

the best-so-far tour Tbs, and Cbs is its length. 

� Note that this additional feedback to the best-so-far � Note that this additional feedback to the best-so-far 

tour is an example of a daemon action of the ACO 

metaheuristic.
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Update of Pheromone Trails 

� Thus equation for the pheromone deposit becomes:

� Where ∆τk and ∆τbs are defined as follows:� Where ∆τk
ij and ∆τbs

ij are defined as follows:
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Update of Pheromone Trails 

� In EAS pheromone evaporation is implemented as 

in AS.

� Computational results suggest that the use of the 

elitist strategy with an appropriate value for 

parameter e allows AS to:parameter e allows AS to:

– find better tours and 

– find them in a lower number of iterations
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Parameter Values

� Good parameter values for the EAS are:

– The parameter α: α = 1

– The parameter β: β = 2 to 5

– Evaporation rate: ρ = 0.5

– The number of ants: m = n (the number of cities)– The number of ants: m = n (the number of cities)

– The initialization value of pheromone trial:

τ0 = (e + m) / ρ Cnn

– The parameter e: e = n
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Rank-Based Ant System

� Rank-based Ant System (ASrank)

– Another improvement over AS

– It was proposed by Bullnheimer et al. (1999c).

� In ASrank each ant deposits an amount of pheromone 

that decreases with its rank. that decreases with its rank. 

� Additionally, as in EAS, the best-so-far ant always 

deposits the largest amount of pheromone in each 

iteration.
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Update of Pheromone Trails 

� Before updating the pheromone trails, the ants are 

sorted by increasing tour length 

� The quantity of pheromone an ant deposits is 

weighted according to the rank r of the ant

� Ties can be solved randomly. � Ties can be solved randomly. 

� In each iteration only the (w – 1) best-ranked ants 

and the ant that produced the best-so-far tour are 

allowed to deposit pheromone. 

� The ant that produced the best-so-far tour does not 

necessarily belong to the set of ants of the current 

algorithm iteration.
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Update of Pheromone Trails 

� The best-so-far tour gives the strongest feedback, 

with weight w 

� Its contribution 1 / Cbs is multiplied by w

� The r-th best ant of the current iteration contributes 

to pheromone updating with the value 1 / Crto pheromone updating with the value 1 / Cr

multiplied by a weight given by max{0; w – r}. 
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Update of Pheromone Trails 

� Thus, the ASrank pheromone update rule is:

� where  = 1 / Cr and = 1 / Cbs
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Update of Pheromone Trails 

� The results of an experimental evaluation suggest 

that ASrank performs slightly better than EAS and 

significantly better than AS.
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Parameter Values

� Good parameter values for the Rank-Based Ant 

System are:

– The parameter α: α = 1

– The parameter β: β = 2 to 5

– Evaporation rate: ρ= 0.1– Evaporation rate: ρ= 0.1

– The number of ants: m = n (the number of cities)

– The initialization value of pheromone trial:

τ0 = 0.5 r (r - 1) / ρ Cnn

– The parameter e: e = n

– The number of ants that deposit pheromones: w = 6
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MAX–MIN Ant System

� MAX–MIN Ant System (MMAS)

– introduces four main modifications with respect to AS.

– It was introduced by Stützle & Hoos (1997, 2000); 

Stützle, (1999).
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MAX–MIN Ant System

� First modification:

– only either the iteration-best ant, that is, the ant that 

produced the best tour in the current iteration, or the 

best-so-far ant is allowed to deposit pheromone.

– the first modification may lead to a stagnation situation in the first modification may lead to a stagnation situation in 

which all the ants follow the same tour, because of the 

excessive growth of pheromone trails on arcs of a good, 

although suboptimal, tour.

– To counteract this effect, a second modification 

introduced by MMAS.

� Second modification: 

– It limits the possible range of pheromone trail values to 

the interval [τmin, τmax]. 
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MAX–MIN Ant System

� Third modification:

– the pheromone trails are initialized to the upper 

pheromone trail limit

– which, together with a small pheromone evaporation rate, 

increases the exploration of tours at the start of the increases the exploration of tours at the start of the 

search. 

� Fourth modification:

– The pheromone trails are reinitialized each time the 

system approaches stagnation or when no improved tour 

has been generated for a certain number of consecutive 

iterations.
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Update of Pheromone Trails 

� After all ants have constructed a tour, pheromones 

are updated by applying evaporation as in AS, 

followed by the deposit of new pheromone as 

follows:

� where ∆τbest
ij = 1 / Cbest. 
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Update of Pheromone Trails 

� The ant which is allowed to add pheromone may be 

either:

– the best-so-far, in which case ∆τbest
ij = 1 / Cbs or 

– the iteration-best, in which case ∆τbest
ij = 1 / Cib, where 

Cib is the length of the iteration-best tour. C is the length of the iteration-best tour. 

� In MMAS implementations both the iteration-best 

and the best-so-far update rules are used, in an 

alternate way. 
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Update of Pheromone Trails 

� The choice of the relative frequency with which the 

two pheromone update rules are applied has an 

influence on how greedy the search is: 

– When pheromone  updates are always performed by the 

best-so-far ant, the search focuses very quickly around best-so-far ant, the search focuses very quickly around 

Tbs

– when it is the iteration-best ant that updates 

pheromones, then the number of arcs that receive 

pheromone is larger and the search is less directed.
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Update of Pheromone Trails 

� Experimental results indicate that:

– for small TSP instances it may be best to use only 

iteration-best pheromone updates

– for large TSPs with several hundreds of cities the best 

performance is obtained by giving an increasingly performance is obtained by giving an increasingly 

stronger emphasis to the best-so-far tour

� This can be achieved, for example, by gradually 

increasing the frequency with which the best-so-far 

tour Tbs is chosen for the trail update.



Ant Colony Optimization: Part 4

Trails Pheromone Trail Limits

� In MMAS, lower and upper limits τmin and τmax on 

the possible pheromone values on any arc are 

imposed in order to avoid search stagnation. 

� The imposed pheromone trail limits have the effect 

of limiting the probability pij of selecting a city j of limiting the probability pij of selecting a city j 

when an ant is in city i to the interval [pmin, pmax], 

with 

0 < pmin ≤ pij ≤ pmax ≤ 1

� Only when an ant k has just one single possible 

choice for the next city, that is |Ni
k|=1, we have 

pmin = pmax=1
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Trails Pheromone Trail Limits

� MMAS uses an estimate of this value, 1 / ρ Cbs, to 

define τmax: each time a new best-so-far tour is 

found, the value of τmax is updated.

� The lower pheromone trail limit is set to τmin= 

τmax/a, τmax/a, 

– where a is a parameter 

� Experimental results suggest that, in order to avoid 

stagnation, τmin play a more important role than τmax. 
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Pheromone Trail Initialization and Reinitialization

� At the start of the algorithm, the initial pheromone 

trails are set to an estimate of the upper pheromone 

trail limit. 

� A small pheromone evaporation parameter causes a 

slow increase in the relative difference in the slow increase in the relative difference in the 

pheromone trail levels, so that the initial search 

phase of MMAS is very explorative.

� As a further means of increasing the exploration of 

paths that have only a small probability of being 

chosen, in MMAS pheromone trails are 

occasionally reinitialized.
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Pheromone Trail Initialization and Reinitialization

� Pheromone trail reinitialization is typically 

triggered when the algorithm approaches the 

stagnation behavior 

– e.g. if for a given number of algorithm iterations no 

improved tour is found.improved tour is found.
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Parameter Values

� Good parameter values for the MMAS are:

– The parameter α: α = 1

– The parameter β: β = 2 to 5

– Evaporation rate: ρ= 0.02

– The number of ants: m = n (the number of cities)– The number of ants: m = n (the number of cities)

– The initialization value of pheromone trial:

τ0 = 1 / ρ Cnn

– The pheromone trail limits are:

� where avg is the average number of different choices available to 

an ant at each step while constructing a solution
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MAX–MIN Ant System

� MMAS is one of the most studied ACO algorithms 

and it has been extended in many ways. 

� In one of these extensions, the pheromone update 

rule occasionally uses the best tour found since the 

most recent reinitialization of the pheromone trails most recent reinitialization of the pheromone trails 

instead of the best-so-far tour. 



Ant Colony System
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Ant Colony System

� Ant Colony System (ACS)

– introduced by Dorigo & Gambardella, 1997a,b.

� ACS differs from AS in three main points.

– First, It exploits the search experience accumulated by 

the ants more strongly than AS does, through the use of a the ants more strongly than AS does, through the use of a 

more aggressive action choice rule. 

– Second, Pheromone evaporation and pheromone deposit 

take place only on the arcs belonging to the best-so-far 

tour. 

– Third, Each time an ant uses an arc (i, j) to move from 

city i to city j, it removes some pheromone from the arc 

to increase the exploration of alternative paths. 
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Tour Construction

� In ACS, when located at city i, ant k moves to a city 

j chosen according to:

where q is a random variable uniformly distributed in [0, – where q is a random variable uniformly distributed in [0, 

1]

– q0 (0 ≤ q0 ≤ 1) is a parameter

– J is calculated by (α = 1):
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Tour Construction

� With probability q0

– the ant makes the best possible move as indicated by the 

learned pheromone trails and the heuristic 

information 

– In this case, the ant is exploiting the learned knowledgeIn this case, the ant is exploiting the learned knowledge

– It concentrates the search of the system around the best-

so-far solution or to explore other tours.

� With probability 1 - q0

– It performs a biased exploration of the arcs. 
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Global Pheromone Trail Update

� In ACS only one ant (the best-so-far ant) is allowed 

to add pheromone after each iteration. 

� The update in ACS is implemented by the following 

equation:

– where ∆τbest
ij = 1 / Cbs

� Both evaporation and new pheromone deposit, only 

applies to the arcs of Tbs, not to all the arcs as in AS.

� In this way the computational complexity of the 

pheromone update at each iteration is reduced
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Global Pheromone Trail Update

� In initial experiments, the use of the iteration-best 

tour was also considered for the pheromone 

updates,

– for small TSP instances the differences in the final tour 

quality obtained by updating the pheromones using the quality obtained by updating the pheromones using the 

best-so-far or the iteration-best tour was found to be 

minimal, 

– for instances with more than 100 cities the use of the 

best-so-far tour gave far better results
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Local Pheromone Trail Update

� In addition to the global pheromone trail updating 

rule, in ACS the ants use a local pheromone 

update rule 

� They apply immediately after having crossed an arc 

(i, j) during the tour construction:(i, j) during the tour construction:

– where ζ, 0 < ζ < 1, is a parameter
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Local Pheromone Trail Update

� The effect of the local updating rule is that each 

time an ant uses an arc  (i, j) its pheromone trail τij is 

reduced, so that the arc becomes less desirable for 

the following ants. 

� This allows an increase in the exploration of arcs � This allows an increase in the exploration of arcs 

that have not been visited yet and, in practice, has 

the effect that the algorithm does not show a 

stagnation behavior (i.e., ants do not converge to the 

generation of a common path)
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Local Pheromone Trail Update

� It is important to note that, while for the previously 

discussed AS variants it does not matter whether the 

ants construct the tours in parallel or sequentially

� This makes a difference in ACS because of the local 

pheromone update rule. pheromone update rule. 

– In ACS ants construct tour sequentially
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Parameter Values

� Good parameter values for the ACS are:

– The parameter α: α = 1

– The parameter β: β = 2 to 5

– Evaporation rate: ρ= 0.1

– The number of ants: m = 10– The number of ants: m = 10

– The initialization value of pheromone trial:

τ0 = 1 / nCnn

– The local pheromone trail update rule: ζ = 0.1

– The pseudorandom proportional action choice rule:

q0 = 0.9



Search Stagnation 
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A visual representation of the pheromone matrix
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Search Stagnation 

� The pheromone values on the arcs, stored in the 

pheromone matrix, are translated into gray-scale 

values; 

� The darker an entry, the higher the associated 

pheromone trail value. pheromone trail value. 

� The plots, from upper left to lower right, show the 

pheromone value for AS applied to TSPLIB 

instance burma14 with 14 cities after 0, 5, 10, and 

100 iterations. 

� The burma14 is a symmetric TSP instance.
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Search Stagnation 

� Search stagnation 

– is defined as the situation in which all the ants follow the 

same path and construct the same solution.

� With bad parameter settings, an early stagnation 

of the search happenedof the search happened

� In such an undesirable situation the system has 

stopped to explore new possibilities and no better 

tour is likely to be found anymore.



Ant Colony Optimization: Part 4

Search Stagnation 

� Several measures may be used to detect stagnation 

situations.

– Standard deviation

– Coefficient variation (CV)

– Distance between tours– Distance between tours

– The average λ-branching factor
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Search Stagnation 

� Standard deviation

– One of the simplest possibilities is to compute the 

standard deviation σL of the length of the tours the ants 

construct after every iteration

– If σL is zero, this is an indication that all the ants follow If σL is zero, this is an indication that all the ants follow 

the same path 

– Although σL can go to zero also in the very unlikely case 

in which the ants follow different tours of the same 

length.
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Search Stagnation 

� Coefficient of variation (CV)

– Because the standard deviation depends on the absolute 

values of the tour lengths, a better choice is the use of the 

variation coefficient, which is independent of the scale.

Coefficient of variation = 

standard deviation of the tour lengths / 

the average tour length
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Search Stagnation 

� The distance between tours 

– gives a better indication of the amount of exploration the 

ants perform. 

– In the TSP case, a way of measuring the distance dist(T, 

T’) between two tours T and T’ is to count the number of T’) between two tours T and T’ is to count the number of 

arcs contained in one tour but not in the other. 

– A decrease in the average distance between the ants’ 

tours indicates that preferred paths are appearing, and if 

the average distance becomes zero, then the system has 

entered search stagnation.

– A disadvantage of this measure is that it is 

computationally expensive
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Search Stagnation 

� The average λ-branching factor

– Measures the distribution of the pheromone trail values 

more directly.

– If for a given city i the concentration of pheromone trail 

on almost all the arcs becomes very small but is large for on almost all the arcs becomes very small but is large for 

a few others, the freedom of choice for extending partial 

tours from that city is very limited.

– Consequently, if this situation arises simultaneously for 

all the nodes of the graph, the part of the search space 

that is effectively searched by the ants becomes relatively 

small.
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Search Stagnation 

� The average λ-branching factor

– the λ-branching factor is given by the number of arcs 

incident to i that have a pheromone trail value 

– where τimax is the maximal and τimin the minimal 

pheromone trail value on arcs incident to node i,

– The value of λ ranges over the interval [0, 1]

– The values of the λ-branching factors range over the 

interval [2, n – 1], where n is the number of nodes in the 

construction graph (which, in the TSP case, is the same as 

the number of cities).



Ant Colony Optimization: Part 4

Search Stagnation 

� The average of the λ-branching factors

– The average of the λ-branching factors of all nodes and 

gives an indication of the size of the search space 

effectively being explored by the ants. 

– If, for example, the average is very close to 3, on average If, for example, the average is very close to 3, on average 

only three arcs for each node have a high probability of 

being chosen. 

– Note that in the TSP the minimal average λ-branching 

factor is 2, because for each city there must be at least 

two arcs used by the ants to reach and to leave the city 

while building their solutions.

– A disadvantage of the λ-branching factor is that its values 

depend on the setting of the parameter λ.



Experimental Evaluation
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Experimental Evaluation

� All the experiments were performed either on 

– 700 MHz Pentium III double-processor machine with 512 

MB of RAM 

– 1.2 GHz Athlon MP double-processor machine with 1 

GB of RAMGB of RAM

– both machines were running SUSE Linux 7.3.
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Behavior of AS

� We show the typical behavior of 

– the average λ-branching factor (λ = 0.05) and of 

– the average distance among tours 

– when AS has parameter settings that result in either good 

or bad algorithm performance. or bad algorithm performance. 
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Behavior of AS

� The parameter settings are denoted by good and 

bad and the values used are 

– α = 1, β = 2, m = n 

– α = 5, β = 0, m = n 

� Bad behavior because of early stagnation� Bad behavior because of early stagnation

� Example: TSPLIB instance kroA100
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Behavior of AS
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Behavior of AS

� The experimental results suggest that:

– if α is set to a large value, AS enters stagnation behavior 

– if α is chosen to be much smaller than 1, AS does not 

find high-quality tours
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Behavior of AS

� An example of bad system behavior that occurs if 

the amount of exploration is too large

� Here, good refers to the same parameter setting 

– α = 1, β = 2, m = n 

� And bad refers to the setting � And bad refers to the setting 

– α = 1, β = 0, m = n 
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Behavior of AS



Ant Colony Optimization: Part 4

Behavior of AS
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Behavior of AS

� For both stagnation measures, the algorithm using 

the bad parameter setting is not able to focus the 

search on the most promising parts of the search 

space.

� The overall result suggests that for AS good � The overall result suggests that for AS good 

parameter settings are those that find a reasonable 

balance between a too narrow focus of the search 

process, which in the worst case may lead to 

stagnation behavior, and a too weak guidance of the 

search, which can cause excessive exploration.
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Behavior of Extensions of AS

� One particularity of AS extensions is that they 

direct the ants’ search in a more aggressive way. 

� This is mainly achieved by a stronger emphasis 

given to the best tours found during each iteration 

(e.g., in MMAS) or the best-so-far tour (e.g., in (e.g., in MMAS) or the best-so-far tour (e.g., in 

ACS).

� We would expect that this stronger focus of the 

search is reflected by statistical measures of the 

amount of exploration.
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Behavior of Extensions of AS
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Behavior of Extensions of AS

� ACS shows a low λ-branching factor and small 

average distances between the tours throughout 

the algorithm’s entire run

� For the others algorithms a transition from a more 

explorative search phase can be observed. explorative search phase can be observed. 

� This transition happens very soon in AS and ASrank, 

it occurs only later in MMAS.
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Behavior of MMAS

� MMAS has the longest explorative search phase. 

� This is mainly due to the fact that pheromone trails 

are initialized to the initial estimate of τmax, and that 

the evaporation rate is set to a low value (ρ = 0.02).

� Because of the low evaporation rate, it takes time � Because of the low evaporation rate, it takes time 

before significant differences among the pheromone 

trails start to appear.

� When this happens, MMAS behavior changes from 

explorative search to a phase of exploitation of the 

experience accumulated in the form of pheromone 

trails.
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Behavior of Extensions of AS

� In this phase, the pheromone on the arcs 

corresponding to the best-found tour rises up to the 

maximum value τmax, while on all the other arcs it 

decreases down to the minimum value τmin.

� This is reflected by an average λ-branching factor of � This is reflected by an average λ-branching factor of 

2.0.
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Behavior of ACS

� ACS uses a very aggressive search that focuses 

from the very beginning around the best-so-far tour 

Tbs.

� It generates tours that differ only in a relatively 

small number of arcs from the best-so-far tour Tbs.small number of arcs from the best-so-far tour Tbs.

� This is achieved by choosing a large value for q0 in 

the pseudorandom proportional action choice rule

� Local updating has the effect of lowering the 

pheromone on visited arcs so that they will be 

chosen with a lower probability by the other ants in 

their remaining steps for completing a tour.
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Solution quality of algorithms

� We compare the development of the average 

solution quality measured of several algorithms as a 

function of the computation time.
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Solution quality of algorithms

� Twenty-five trials for instance d198
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Solution quality of algorithms

� Five trials for instance rat783
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Solution quality of algorithms

� We found experimentally that all extensions of AS 

achieve much better final solutions than AS, and in 

all cases the worst final solution returned by the 

AS extensions is better than the average final 

solution quality returned by AS.solution quality returned by AS.

� It can be observed that ACS is the most aggressive 

of the ACO algorithms and returns the best solution 

quality for very short computation times.
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Behavior of Extensions of AS

� MMAS initially produces rather poor solutions and 

in the initial phases it is outperformed even by AS. 

Nevertheless, its final solution quality, for these two 

instances, is the best among the compared ACO 

algorithms.algorithms.

� Comparisons among the several AS extensions 

indicate that the best performing variants are 

MMAS and ACS.



ACO plus Local Search 
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ACO plus Local Search 

� The literature on metaheuristics tells us that a 

promising approach to obtaining high-quality 

solutions is to couple a local search algorithm.

� Once ants have completed their solution 

construction, the solutions can be taken to their construction, the solutions can be taken to their 

local optimum by the application of a local search 

algorithm.

� Then pheromones are updated on the arcs of the 

locally optimized solutions.
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ACO plus Local Search 

� There exist a large number of possible choices when 

combining local search with ACO algorithms. 

� Some of these possibilities relate to the fundamental 

question of how effective and how efficient the 

local search should be. local search should be. 

� In most local search procedures, the better the 

solution quality returned, the higher the 

computation time required. 
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ACO plus Local Search 

� This translates into the question whether for a given 

computation time 

– it is better to frequently apply a quick local search 

algorithm that only slightly improves the solution quality 

of the initial solutions, or 

– whether a slow but more effective local search should be 

used less frequently.
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ACO plus Local Search 

� Other issues are related to particular parameter 

settings and to which solutions the local search 

should be applied. 

– For example, the number of ants to be used, the necessity 

to use heuristic information or not, and which ants should to use heuristic information or not, and which ants should 

be allowed to improve their solutions by a local search, 

are all questions of particular interest when an ACO 

algorithm is coupled with a local search routine.
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ACO plus Local Search 

� In general, there may be significant differences 

regarding particular parameter settings. 

� For example, for MMAS it was found that 

– when applied without local search, a good strategy is to 

frequently use the iteration-best ant to update pheromone frequently use the iteration-best ant to update pheromone 

trails. 

– Yet, when combined with local search a stronger 

emphasis of the best-so-far update seemed to improve 

performance.
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ACO plus Local Search 

� We study how the performance of MMAS, is 

improved when coupled with a local search. 

� We implement three of the most used types of local 

search for the TSP: 2-opt, 2.5-opt, and 3-opt. 

� All three implementations exploit three standard � All three implementations exploit three standard 

speedup techniques: 

– the use of nearest-neighbor lists of limited length (here 

20), 

– the use of a fixed radius nearest-neighbor search, and 

– the use of don’t look bits.
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2-opt neighborhood

� The 2–opt neighborhoods in the TSP 

� Given a candidate solution s, the TSP 2–opt neighborhood 

of a candidate solution s consists of the set of all the 

candidate solutions s’ that can be obtained from s by 

exchanging two pairs of arcs in all the possible ways. 

Example: the pair of arcs (b, c) and (a, f) is removed and � Example: the pair of arcs (b, c) and (a, f) is removed and 

replaced by the pair  (a, c) and (b, f) 
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3-opt neighborhood

� The 3-opt neighborhood consists of those tours that can be 

obtained from a tour s by replacing at most three of its arcs.

� In a 3-opt local search procedure 2-opt moves are also 

examined. Example:
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2.5-opt neighborhood

� 2.5-opt checks whether inserting the city between a 

city i and its successor, as illustrated in the figure 

below, results in an improved tour.
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MMAS with 2-opt, 2.5-opt, and 3-opt

� 2.5-opt leads only to a small, constant overhead in 

computation time over that required by a 2-opt local 

search but, as experimental results show, it leads to 

significantly better tours.

� However, the tour quality returned by 2.5-opt is still � However, the tour quality returned by 2.5-opt is still 

significantly worse than that of 3-opt.
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MMAS with 2-opt, 2.5-opt, and 3-opt

� We combined MMAS with 2-opt, 2.5-opt, and 3-opt 

local search procedures. 

� While the solution quality returned by these local 

search algorithms increases from 2-opt to 3-opt, the 

same is true for the necessary computation time to same is true for the necessary computation time to 

identify local optima.
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MMAS with 2-opt, 2.5-opt, and 3-opt

� symmetric TSPLIB instances pcb1173
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MMAS with 2-opt, 2.5-opt, and 3-opt

� symmetric TSPLIB instances pr2392
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MMAS with 2-opt, 2.5-opt, and 3-opt

� For the largest amount of computation time, MMAS 

combined with 3-opt gives the best average solution 

quality.

� In any case, once the final tour quality obtained by 

the different variants is taken into account, the the different variants is taken into account, the 

computational results clearly suggest that the use of 

more effective local searches improves the solution 

quality of MMAS.
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Number of Ants

� In a second series of experiments we investigated 

the role of the number of ants m on the final 

performance of MMAS. 

� We ran MMAS using parameter settings of m œ {1, 

2, 5, 10, 25, 50, 100} leaving all other choices the 2, 5, 10, 25, 50, 100} leaving all other choices the 

same. 
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Number of Ants

� symmetric TSPLIB instance pcb1173
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Number of Ants

� the symmetric TSPLIB instance pr2392
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Number of Ants

� The result was that on small problem instances with 

up to 500 cities, the number of ants did not matter 

very much with respect to the best final 

performance. 

� In fact, the best trade-off between solution quality � In fact, the best trade-off between solution quality 

and computation time seems to be obtained when 

using a small number of ants—between two and 

ten.
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Heuristic Information

� Once local search is added to the ACO 

implementation, the randomly generated initial tours 

become good enough. 

� It is therefore reasonable to expect that heuristic 

information is no longer necessary.information is no longer necessary.

� Experiments with MMAS and ACS on the TSP 

confirmed this conjecture.
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Heuristic Information

� MMAS for the symmetric TSPLIB instance pcb1173
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Heuristic Information

� ACS for the symmetric TSPLIB instance pcb1173
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