

#### Chapter 2: Input: Concepts, Instances, and Attributes

# Terminology

- Components of the input:
  - Concepts: kinds of things that can be learned
    - Aim: intelligible and operational concept description
  - Instances: the individual, independent examples of a concept
  - Attributes: measuring aspects of an instance
     We will focus on nominal (categorical) and numeric ones

#### 2.1 What's a concept?

# What's a concept?

- Styles of learning:
  - Classification learning: predicting a discrete class
  - Association learning: detecting associations between features

#### - Clustering:

grouping similar instances into clusters

– Numeric prediction:

predicting a numeric quantity

- Concept: thing to be learned
- Concept description: output of learning scheme

# **Classification learning**

- Example problems: weather data, contact lenses, irises, labor negotiations
  - Scheme is provided with actual outcome
- Outcome is called the *class* of the example
- Measure success on fresh data for which class labels are known (*test data*)
- In practice success is often measured subjectively

# **Association learning**

- Can be applied if no class is specified and any kind of structure is considered "interesting"
- Difference to classification learning:
  - Can predict any attribute's value, not just the class, and more than one attribute's value at a time
  - Hence: far more association rules than classification rules
  - Thus: constraints are necessary
     Minimum coverage (80% of data set), and
     Minimum accuracy (95% accurate)

# Clustering

- Finding groups of items that are similar
  - The class of an example is not known
- Success often measured subjectively
- Example: a version of the iris data in which the type of iris is omitted

#### Iris data as a clustering problem

|        | Sepal length<br>(cm) | Sepal width<br>(cm) | Petal length<br>(cm) | Petal width<br>(cm) |
|--------|----------------------|---------------------|----------------------|---------------------|
| 1      | 5.1                  | 3.5                 | 1.4                  | 0.2                 |
| 2      | 4.9                  | 3.0                 | 1.4                  | 0.2                 |
| 3      | 4.7                  | 3.2                 | 1.3                  | 0.2                 |
| 4      | 4.6                  | 3.1                 | 1.5                  | 0.2                 |
| 5      | 5.0                  | 3.6                 | 1.4                  | 0.2                 |
| <br>51 | 7.0                  | 3.2                 | 4.7                  | 1.4                 |
| 52     | 6.4                  | 3.2                 | 4.5                  | 1.5                 |
| 53     | 6.9                  | 3.1                 | 4.9                  | 1.5                 |
| 54     | 5.5                  | 2.3                 | 4.0                  | 1.3                 |
| 55     | 6.5                  | 2.8                 | 4.6                  | 1.5                 |
|        | 6.0                  | 2.2                 | C 0                  | 2.5                 |
| 101    | 0.3                  | 3.3                 | 6.U                  | 2.5                 |
| 102    | 5.8                  | 2.7                 | 5.1                  | 1.9                 |
| 103    | 7.1                  | 3.0                 | 5.9                  | 2.1                 |
| 104    | 6.3                  | 2.9                 | 5.6                  | 1.8                 |
| 105    | 6.5                  | 3.0                 | 5.8                  | 2.2                 |
|        |                      |                     |                      |                     |

# **Numeric prediction**

- Variant of classification learning where "class" is numeric (also called "regression")
- Scheme is being provided with target value
- Measure success on test data
- To find the important attributes and how they relate to the numeric outcome
- Examples:
  - The CPU performance problem
  - a version of the weather data in which what is to be predicted is the time (in minutes) to play

### Weather data with a numeric class

| Outlook  | Temperature | Humidity | Windy | Play time (min.) |  |
|----------|-------------|----------|-------|------------------|--|
| sunny    | 85          | 85       | false | 5                |  |
| sunny    | 80          | 90       | true  | 0                |  |
| overcast | 83          | 86       | false | 55               |  |
| rainy    | 70          | 96       | false | 40               |  |
| rainy    | 68          | 80       | false | 65               |  |
| rainy    | 65          | 70       | true  | 45               |  |
| overcast | 64          | 65       | true  | 60               |  |
| sunny    | 72          | 95       | false | 0                |  |
| sunny    | 69          | 70       | false | 70               |  |
| rainy    | 75          | 80       | false | 45               |  |
| sunny    | 75          | 70       | true  | 50               |  |
| overcast | 72          | 90       | true  | 55               |  |
| overcast | 81          | 75       | false | 75               |  |
| rainy    | 71          | 91       | true  | 10               |  |

#### 2.2 What's in an example?

# What's in an example?

• Instance: specific type of example

- Thing to be classified, associated, or clustered
- Individual, independent example of target concept
- Characterized by a predetermined set of attributes
- Input to learning scheme: set of instances/dataset
- Each dataset is represented as a matrix of instances versus attributes
  - Represented as a single relation/flat file
- Rather restricted form of input
  - No relationships between objects

### A family tree



#### Two ways of expressing the sister-of relation

| first  | second | sister |
|--------|--------|--------|
| person | person | of?    |
| Peter  | Peggy  | no     |
| Peter  | Steven | no     |
|        |        |        |
| Steven | Peter  | no     |
| Steven | Graham | no     |
| Steven | Pam    | yes    |
| Steven | Grace  | no     |
|        |        |        |
| lan    | Pippa  | yes    |
|        |        |        |
| Anna   | Nikki  | yes    |
|        |        |        |
| Nikki  | Anna   | yes    |
|        |        |        |

| first<br>person | second<br>person | sister<br>of? |
|-----------------|------------------|---------------|
| Steven          | Pam              | yes           |
| Graham          | Pam              | yes           |
| lan             | Pippa            | yes           |
| Brian           | Pippa            | yes           |
| Anna            | Nikki            | yes           |
| Nikki           | Anna             | yes           |
|                 |                  |               |
|                 |                  |               |
|                 |                  |               |
|                 |                  |               |
|                 |                  |               |
|                 |                  |               |

#### Family tree represented as a table

| Name   | Gender | Parent1 | Parent2 |
|--------|--------|---------|---------|
| Peter  | male   | ?       | ?       |
| Peggy  | female | ?       | ?       |
| Steven | male   | Peter   | Peggy   |
| Graham | male   | Peter   | Peggy   |
| Pam    | female | Peter   | Peggy   |
| lan    | male   | Grace   | Ray     |
|        |        |         |         |

#### The sister-of relation represented in a table

| First person |        |         | Second person |       |        |         |         |            |
|--------------|--------|---------|---------------|-------|--------|---------|---------|------------|
| Name         | Gender | Parent1 | Parent2       | Name  | Gender | Parent1 | Parent2 | Sister of? |
| Steven       | male   | Peter   | Peggy         | Pam   | female | Peter   | Peggy   | ves        |
| Graham       | male   | Peter   | Peggy         | Pam   | female | Peter   | Peggy   | ves        |
| lan          | male   | Grace   | Ray           | Pippa | female | Grace   | Ray     | yes        |
| Brian        | male   | Grace   | Rav           | Pippa | female | Grace   | Rav     | ves        |
| Anna         | female | Pam     | lan           | Nikki | female | Pam     | lan     | yes        |
| Nikki        | female | Pam     | lan           | Anna  | female | Pam     | lan     | yes        |
|              |        |         | all the       | rest  |        |         |         | no         |

#### A simple rule for the sister-of relation

If second person's gender = female
 and first person's parent1 = second person's parent1
 then sister-of = yes

# Generating a flat file

- Process of flattening called "denormalization"
  - Several relations are joined together to make one
- Possible with any finite set of finite relations
- Problematic: relationships without prespecified number of objects
- Denormalization may produce spurious regularities that reflect structure of database
  - Example: "supplier" predicts "supplier address"

#### The `ancestor of' relation

| First person |        |         | Second person |             |        |         | Anoston |     |
|--------------|--------|---------|---------------|-------------|--------|---------|---------|-----|
| Name         | Gender | Parent1 | Parent2       | Name        | Gender | Parent1 | Parent2 | of? |
| Peter        | male   | ?       | ?             | Steven      | male   | Peter   | Peggy   | yes |
| Peter        | male   | ?       | ?             | Pam         | female | Peter   | Peggy   | yes |
| Peter        | male   | ?       | ?             | Anna        | female | Pam     | lan     | yes |
| Peter        | male   | ?       | ?             | Nikki       | female | Pam     | lan     | ves |
| Pam          | female | Peter   | Peggy         | Nikki       | female | Pam     | lan     | yes |
| Grace        | female | ?       | ?             | lan         | male   | Grace   | Ray     | yes |
| Grace        | female | ?       | ?             | Nikki       | female | Pam     | lan     | yes |
|              |        |         | othe          | er examples | here   |         |         | yes |
| all the rest |        |         |               |             |        | no      |         |     |

#### 2.3 What's in an attribute?

# What's in an attribute?

- Each instance is described by a fixed predefined set of features or attributes
- But: number of attributes may vary in practice
  - Possible solution: "irrelevant value" flag
  - If the instances were transportation vehicles
- Related problem: existence of an attribute may depend of value of another one
  - Spouse's name depends on the value of married or single attribute
- Possible attribute types ("levels of measurement"):
  - Nominal, ordinal, interval and ratio

# **Nominal quantities**

- Values are distinct symbols
  - Values themselves serve only as labels or names
  - Nominal comes from the Latin word for name
- Example: attribute "outlook" from weather data
  - Values: "sunny", "overcast", and "rainy"
- No relation is implied among nominal values (no ordering or distance measure)
- Only equality tests can be performed

outlook: sunny  $\rightarrow$  no overcast  $\rightarrow$  yes rainy  $\rightarrow$  yes

# **Ordinal quantities**

- Impose order on values
- But: no distance between values defined
- Example: attribute "temperature" in weather data

– Values: "hot" > "mild" > "cool"

- Note: addition and subtraction don't make sense
- Example rule: temperature < hot => play = yes
- Distinction between nominal and ordinal not always clear (e.g. attribute "outlook")

# **Interval quantities**

- Interval quantities are not only ordered but measured in fixed and equal units
- Example 1: attribute "temperature" expressed in degrees Fahrenheit
- Example 2: attribute "date" (year)
- Difference of two values makes sense
- Sum or product doesn't make sense
  - E.g. sum of the years 1939 and 1945 (3884)
  - Or, three times the year 1939 (5817)
- Zero point is not defined!

# **Ratio quantities**

- Ratio quantities are ones for which the measurement scheme defines a zero point
- Example: attribute "distance"
  - Distance between an object and itself is zero
- Ratio quantities are treated as real numbers
  - All mathematical operations are allowed
- But: is there an "inherently" defined zero point?
  - Answer depends on scientific knowledge (e.g. Fahrenheit knew no lower limit to temperature)

### **Attribute types used in practice**

- Most data mining schemes accommodate just two levels of measurement: nominal and ordinal
- Nominal attributes are also called "categorical", "enumerated", or "discrete"
  - But: "enumerated" and "discrete" imply order
- Special case: dichotomy ("boolean" attribute)

#### Information about the data is called *metadata*

#### **2.4 Preparing the input**

# Preparing the input

- Denormalization is not the only issue
- Data cleaning: a process of checking data in quality and careful
- Problem: different data sources (e.g. sales department, customer billing department, ...)
  - Differences: styles of record keeping, conventions, time periods, data aggregation, primary keys, errors
  - Data must be assembled, integrated, cleaned up
  - "Data warehouse": The idea of company wide database integration
- External data may be required
- Critical: type and level of data aggregation

### The ARFF format

• The attribute-relation file format (ARFF)

- a standard way of representing datasets that
  - consist of independent, unordered instances
  - do not involve relationships among instances
- ARFF is used in the Java package Called the Waikato Environment for Knowledge Analysis, or Weka

#### **ARFF file for the weather data**

```
% ARFF file for the weather data with some numeric features
8
@relation weather
@attribute outlook { sunny, overcast, rainy }
@attribute temperature numeric
@attribute humidity numeric
@attribute windy { true, false }
@attribute play? { yes, no }
@data
8
% 14 instances
s.
sunny, 85, 85, false, no
sunny, 80, 90, true, no
overcast, 83, 86, false, yes
rainy, 70, 96, false, yes
rainy, 68, 80, false, yes
   ....
```

### **Additional attribute types**

• ARFF supports *string* attributes:

@attribute description string

- Similar to nominal attributes but list of values is not prespecified
- It also supports *date* attributes:

@attribute today date

- Uses the ISO8601
- combined date and time format yyyyMMddTHH:mm:ss

#### **Sparse data**

 In some applications most attribute values in a dataset are zero

- E.g.1: supermarket basket data
- E.g.2: word counts in a text categorization problem
- ARFF supports sparse data

0, 26, 0, 0, 0, 0, 63, 0, 0, 0, "class A" 0, 0, 0, 42, 0, 0, 0, 0, 0, 0, "class B" {1 26, 6 63, 10 "class A"}

{3 42, 10 "class B"}

• This also works for nominal attributes

### **Attribute types**

- Interpretation of attribute types in ARFF depends on learning scheme
  - Numeric attributes are interpreted as
    - ordinal scales if less-than and greater-than are used
    - ◆ ratio scales if distance calculations are performed
  - Instance-based schemes define distance between nominal values (0 if values are equal, 1 otherwise)
- Integers in some given data file
  - Part number, student number

#### Nominal vs. ordinal

#### • Attribute "age" nominal

```
If age = young and astigmatic = no and
  tear production rate = normal then recommendation = soft
If age = pre-presbyopic and astigmatic = no and
  tear production rate = normal then recommendation = soft
```

#### Attribute "age" ordinal (e.g. "young" < "pre-presbyopic" < "presbyopic")</li>

If age ≤ pre-presbyopic and astigmatic = no and tear production rate = normal then recommendation = soft

### **Missing values**

• Frequently indicated by out-of-range entries

- Types: unknown, unrecorded, irrelevant
- Reasons:
  - malfunctioning equipment
  - changes in experimental design
  - collation of different datasets
- Missing value may have significance in itself (e.g. missing test in a medical examination)
  - Most schemes assume that is not the case: "missing" may need to be coded as additional value

#### **Inaccurate values**

- Reason: data has not been collected for mining it
- Result: errors and omissions that don't affect original purpose of data (e.g. age of customer)
- Typographical errors in nominal attributes P values need to be checked for consistency
- Typographical and measurement errors in numeric attributes => outliers need to be identified
- Errors may be deliberate (e.g. wrong zip codes)
- Other problems: duplicates, stale data

# Getting to know the data

• Simple visualization tools are very useful

- Nominal attributes: histograms (Distribution consistent with background knowledge?)
- Numeric attributes: graphs (Any obvious outliers?)
- 2D and 3D plots show dependencies
- Need to consult domain experts
- Too much data to inspect? Take a sample!

### The end of Chapter 2: Input: Concepts, Instances, and Attributes