Chapter 3: Output: Knowledge Representation
Output: representing structural patterns

- Many different ways of representing patterns
 - Decision trees, classification rules, …
- Also called “knowledge” representation
- Representation determines inference method
- Understanding the output is the key to understanding the underlying learning methods
- Different types of output for different learning problems (e.g. classification, regression, …)
Output: Knowledge representation

- Decision tables
- Decision trees
- Classification rules
- Association rules
- Rules with exceptions
- Rules involving relations
- Trees for numeric prediction
- Instance-based representation
- Clusters
3.1 Decision tables
Decision tables

- Simplest way of representing output
- Use the same format as input!
- Main problem: selecting the right attributes
Decision table for the weather problem

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>false</td>
<td>no</td>
</tr>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>mild</td>
<td>high</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>cool</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>cool</td>
<td>normal</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>false</td>
<td>no</td>
</tr>
<tr>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>mild</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>mild</td>
<td>high</td>
<td>true</td>
<td>no</td>
</tr>
</tbody>
</table>
3.2 Decision trees
Decision trees

- Nodes involve testing a particular attribute
- Usually, attribute value is compared to constant
- Other possibilities:
 - Comparing values of two attributes
 - Using a function of one or more attributes
- Unknown instance is routed down the tree
- Leaves assign classification, set of classifications, or probability distribution to instances
Nominal and numeric attributes

- **Nominal:**
 - Number of children usually equal to number values
 - Attribute won’t get tested more than once
 - Other possibility: division into two subsets

- **Numeric:**
 - Test whether value is greater or less than constant
 - Attribute may get tested several times
 - Other possibility: three-way split (or multi-way split)
 - Integer: less than, equal to, greater than
 - Real: below, within, above
Missing values

- Does absence of value have some significance?
 - Yes => “missing” is a separate value
 - No => “missing” must be treated in a special way
 - E.g. assign instance to most popular branch
Decision tree for the labor data
3.3 Classification rules
Classification rules

- Popular alternative to decision trees
- *Antecedent* (precondition): a series of tests (just like the tests at the nodes of a decision tree)
- Tests are usually logically ANDed together (but may also be general logical expressions)
- *Consequent* (conclusion): set of classes or probability distribution assigned by rule
- Individual rules are often logically ORed together
 - Conflicts arise if different conclusions apply
From trees to rules

- Easy: converting a tree into a set of rules
 - One rule for each leaf:
 - Antecedent contains a condition for every node on the path from the root to the leaf
 - Consequent is class assigned by the leaf
- Produces rules that are very clear
 - Doesn’t matter in which order they are executed
- But: resulting rules are unnecessarily complex
 - It needs to remove redundant tests/rules
From rules to trees

● More difficult: transforming a rule set into a tree
 – Tree cannot easily express disjunction between rules

● Example: rules which test different attributes

 If a and b then x
 If c and d then x

● Corresponding tree contains identical subtrees
 => “replicated subtree problem”
A tree for a simple disjunction
The exclusive-or problem

- If $x=1$ and $y=0$ then class = a
- If $x=0$ and $y=1$ then class = a
- If $x=0$ and $y=0$ then class = b
- If $x=1$ and $y=1$ then class = b
A tree with a replicated subtree

- there are four attributes, x, y, z, and w,
- each can be 1, 2, or 3

{\begin{align*}
\text{If } & x=1 \text{ and } y=1 \text{ then class } = a \\
\text{If } & z=1 \text{ and } w=1 \text{ then class } = a \\
\text{Otherwise } & \text{class } = b
\end{align*}}
A tree with a replicated subtree (II)

If x=1 and y=1 then class = a
If z=1 and w=1 then class = a
Otherwise class = b
Nuggets of knowledge

- Are rules independent pieces of knowledge? (It seems easy to add a rule to an existing rule base.)
- Problem: ignores how rules are executed
- Two ways of executing a rule set:
 - Ordered set of rules (“decision list”)
 - Order is important for interpretation
 - Unordered set of rules
 - Rules may overlap and lead to different conclusions for the same instance
Interpreting rules

- What if two or more rules conflict?
 - Give no conclusion at all?
 - Go with rule that is most popular on training data?
 - ...

- What if no rule applies to a test instance?
 - Give no conclusion at all?
 - Go with class that is most frequent in training data?
 - ...
Special case: boolean class

- Assumption: if instance does not belong to class “yes”, it belongs to class “no”
- Trick: only learn rules for class “yes” and use default rule for “no”

<table>
<thead>
<tr>
<th>Rule 1</th>
<th>Rule 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>If x=1 and y=1 then class = a</td>
<td></td>
</tr>
<tr>
<td>If z=1 and w=1 then class = a</td>
<td></td>
</tr>
<tr>
<td>Otherwise class = b</td>
<td></td>
</tr>
</tbody>
</table>

- Order of rules is not important. No conflicts!
- Rule can be written in disjunctive normal form
3.4 Association rules
Association rules

- Association rules...
 - ... can predict any attribute and combinations of attributes
 - ... are not intended to be used together as a set

- Large number of possible associations
 - Output needs to be restricted to show only the most predictive associations
 - only those with high support and high confidence
Support and confidence of a rule

- **Support**: number of instances predicted correctly
- **Confidence**: number of correct predictions, as proportion of all instances that rule applies to
- **Example**: 4 cool days with normal humidity

\[
\text{If } \text{temperature} = \text{cool} \text{ then } \text{humidity} = \text{normal}
\]

- Support = 4, confidence = 100%
- Normally: minimum support and confidence prespecified (e.g. support ≥ 2 and confidence $\geq 95\%$ for weather data)
Interpreting association rules

• Interpretation is not obvious:

If windy = false and play = no then outlook = sunny
 and humidity = high

• is \textit{not} the same as

If windy = false and play = no then outlook = sunny
If windy = false and play = no then humidity = high

• It means that the following also holds:

If humidity = high and windy = false and play = no
 then outlook = sunny
3.5 Rules with exceptions
Rules with exceptions

- Idea: allow rules to have *exceptions*
- Example: rule for iris data

If petal length ≥ 2.45 and petal length < 4.45 then Iris versicolor

- New instance:

<table>
<thead>
<tr>
<th>Sepal length (cm)</th>
<th>Sepal width (cm)</th>
<th>Petal length (cm)</th>
<th>Petal width (cm)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>2.6</td>
<td>0.2</td>
<td>Iris setosa</td>
</tr>
</tbody>
</table>

- Modified rule:

If petal length ≥ 2.45 and petal length < 4.45 then

Iris versicolor EXCEPT if petal width < 1.0 then *Iris setosa*
A more complex example

Exceptions to exceptions to exceptions …

```
Default: Iris-setosa
except if petal-length ≥ 2.45 and petal-length < 5.355
    and petal-width < 1.75
    then Iris-versicolor
        except if petal-length ≥ 4.95 and petal-width < 1.55
            then Iris-virginica
        else if sepal-length < 4.95 and sepal-width ≥ 2.45
            then Iris-virginica
    else if petal-length ≥ 3.35
        then Iris-virginica
        except if petal-length < 4.85 and sepal-length < 5.95
            then Iris-versicolor
```

Chapter 3: Output: Knowledge Representation
Advantages of using exceptions

- Rules can be updated incrementally
 - Easy to incorporate new data
 - Easy to incorporate domain knowledge
- People often think in terms of exceptions
- Each conclusion can be considered just in the context of rules and exceptions that lead to it
 - Locality property is important for understanding large rule sets
 - “Normal” rule sets don’t offer this advantage
More on exceptions

- Default...except if...then...
is logically equivalent to
- if...then...else
 (where the else specifies what the default did)
- But: exceptions offer a psychological advantage
 - Assumption: defaults and tests early on apply more widely than exceptions further down
 - Exceptions reflect special cases
3.6 Rules involving relations
Rules involving relations

- So far: all rules involved comparing an attribute value to a constant (e.g. temperature < 45)
- These rules are called “propositional”
- What if problem involves relationships between examples (e.g. family tree problem from above)?
 - Can’t be expressed with propositional rules
 - More expressive representation required
The shapes problem

Shaded: standing
Unshaded: lying
A propositional solution

<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
<th>Sides</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>standing</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>4</td>
<td>standing</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>lying</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>3</td>
<td>standing</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>3</td>
<td>lying</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>4</td>
<td>standing</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>4</td>
<td>lying</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>3</td>
<td>lying</td>
</tr>
</tbody>
</table>

if width ≥ 3.5 and height < 7.0 then lying
if height ≥ 3.5 then standing
A relational solution

- Comparing attributes with each other

  ```
  if width > height then lying
  if height > width then standing
  ```

- Rules of this form is called relational

- Generalizes better to new data

- Standard relations: =, <, >

- Simple solution: add extra attributes
 (e.g. a binary attribute `is width < height?`)
3.7 Trees for numeric prediction
Trees for numeric prediction

- **Regression**: the process of computing an expression that predicts a numeric quantity
- **Regression tree**: “decision tree” where each leaf predicts a numeric quantity
 - Predicted value is average value of training instances that reach the leaf
- **Model tree**: “regression tree” with linear regression models at the leaf nodes
Linear regression for the CPU data

\[
\text{PRP} = \\
-56.1 \\
+0.049 \text{ MYCT} \\
+0.015 \text{ MMIN} \\
+0.006 \text{ MMAX} \\
+0.630 \text{ CACH} \\
-0.270 \text{ CHMIN} \\
+1.46 \text{ CHMAX}
\]
Regression tree for the CPU data
Model tree for the CPU data

LM1 PRP=8.29+0.004 MMAX+2.77 CHMIN
LM2 PRP=20.3+0.004 MMIN-3.99 CHMIN
 +0.946 CHMAX
LM3 PRP=38.1+0.012 MMIN
LM4 PRP=19.5+0.002 MMAX+0.698 CACH
 +0.969 CHMAX
LM5 PRP=285-1.46 MYCT+1.02 CACH
 -9.39 CHMIN
LM6 PRP=-65.8+0.03 MMIN-2.94 CHMIN
 +4.98 CHMAX
3.8 Instance-based representation
Instance-based representation

- Simplest form of learning: *rote learning*
 - Training instances are searched for instance that most closely similar to new instance
 - The instances themselves represent the knowledge
 - Also called *instance-based* learning

- Instance-based learning is *lazy* learning
- Similarity function defines what’s “learned”
Instance-based learning methods

- **Nearest-neighbor** method:
 - each new instance is compared with existing ones using a distance metric, and the closest existing instance is used to assign the class to the new one

- **k-nearest-neighbor** method:
 - more than one nearest neighbor is used, and the majority class of the closest k neighbors
3.9 Clusters
Clusters

- The output takes the form of a diagram that shows how the instances fall into clusters.
- Different cases:
 - **Simple 2D representation**: involves associating a cluster number with each instance
 - **Venn diagram**: allow one instance to belong to more than one cluster
 - **Probabilistic assignment**: associate instances with clusters probabilistically
 - **Dendrogram**: produces a hierarchical structure of clusters (dendron is the Greek word for tree)
Representing clusters (I)

Simple 2D representation

Venn diagram
Representing clusters (II)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.4</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>b</td>
<td>0.1</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>c</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>d</td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>e</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>f</td>
<td>0.1</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>g</td>
<td>0.7</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>h</td>
<td>0.5</td>
<td>0.4</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Dendrogram
The end of
Chapter 3: Output: Knowledge Representation
The distance function

- Simplest case: one numeric attribute
 - Distance is the difference between the two attribute values involved
- Several numeric attributes: normally, Euclidean distance is used and attributes are normalized
- Nominal attributes: distance is set to 1 if values are different, 0 if they are equal
 - E.g. distances between the values red, green, and blue?
 - the distance between red and red is zero and between red and green is one.
- Are all attributes equally important?
 - Weighting the attributes might be necessary