
Chapter 4: Algorithms: The Basic Methods 1

Chapter 4:
Algorithms:
The Basic Methods

Chapter 4: Algorithms: The Basic Methods 2

Simplicity first

� Simple algorithms often work very well!

� There are many kinds of simple structure, eg:

– One attribute does all the work

– All attributes contribute equally &

independently

– A few attributes can be captured by a decision

tree

– Use simple logical rules

– A weighted linear combination might do

– Instance-based: use a few prototypes

Chapter 4: Algorithms: The Basic Methods 3

Algorithms: The basic methods

� 1R Algorithm

� Naïve Bayes Classifier

� Constructing decision trees

� PRISM method

� Mining association rules

� Linear models

� k-nearest neighbor algorithm

� Clustering: k-means method

Chapter 4: Algorithms: The Basic Methods 4

4.1 1R algorithm

Chapter 4: Algorithms: The Basic Methods 5

1R algorithm

� An easy way to find very simple classification rule

� 1R: rules that all test one particular attribute

� Basic version

– One branch for each value

– Each branch assigns most frequent class

– Error rate: proportion of instances that don’t belong to

the majority class of their corresponding branch

– Choose attribute with lowest error rate (assumes
nominal attributes)

� “Missing” is treated as a separate attribute value

Chapter 4: Algorithms: The Basic Methods 6

Pseudo-code or 1R Algorithm

Chapter 4: Algorithms: The Basic Methods 7

Example: The weather problem

Chapter 4: Algorithms: The Basic Methods 8

Evaluating the weather attributes

Chapter 4: Algorithms: The Basic Methods 9

The attribute with the smallest number of errors

Chapter 4: Algorithms: The Basic Methods 10

Dealing with numeric attributes

� Discretize numeric attributes

� Divide each attribute’s range into intervals

– Sort instances according to attribute’s values

– Place breakpoints where class changes

(majority class)

– This minimizes the total error

Chapter 4: Algorithms: The Basic Methods 11

Weather data with some numeric attributes

Chapter 4: Algorithms: The Basic Methods 12

Example: temperature from weather data

� Discretization involves partitioning this

sequence by placing breakpoints wherever the

class changes,

Chapter 4: Algorithms: The Basic Methods 13

The problem of overfitting

� Overfitting is likely to occur whenever an

attribute has a large number of possible

values

� This procedure is very sensitive to noise

– One instance with an incorrect class label will

probably produce a separate interval

� Attribute will have zero errors

� Simple solution: enforce minimum number of
instances in majority class per interval

Chapter 4: Algorithms: The Basic Methods 14

Minimum is set at 3 for temperature attribute

� The partitioning process begins

� the next example is also yes, we lose nothing

by including that in the first partition

� Thus the final discretization is

� the rule set

Chapter 4: Algorithms: The Basic Methods 15

Resulting rule set with overfitting avoidance

Chapter 4: Algorithms: The Basic Methods 16

4.2 Naïve Bayes Classifier

Chapter 4: Algorithms: The Basic Methods 17

Naïve Bayes Classifier

� “Opposite” of 1R: use all the attributes

� Two assumptions: Attributes are

– equally important

– statistically independent

� I.e., knowing the value of one attribute says

nothing about the value of another

� Equally important & independence

assumptions are never correct in real-life
datasets

Chapter 4: Algorithms: The Basic Methods 18

Bayes Theorem

� Probability of event H given evidence E:

� Pr[H]: A priori probability of H

– Probability of event before evidence is seen

� Pr[H|E]: posteriori probability of H

– The probability of H conditional on E

� Pr[E|H]: Posterior probability of X

� Pr[E]: A priori probability of E

Chapter 4: Algorithms: The Basic Methods 19

Naïve Bayes for classification

� Classification learning: what’s the
probability of the class given an instance?

– Evidence E = instance

– Event H = class value for instance

� Naïve assumption: evidence splits into parts

(i.e. attributes) that are independent

Chapter 4: Algorithms: The Basic Methods 20

Naïve Bayes classifier

� Hypothesis H is the class.

� Pr [E]: can be ignored as it is constant for all
classes.

� Pr(H) is the ratio of total samples in class H to

all samples.

∏
=

=
n

k

k HEHEH
1

)|Pr()Pr()|Pr(

Chapter 4: Algorithms: The Basic Methods 21

Naïve Bayes classifier

� For Categorical attribute:

– Pr(Ek|H) is the frequency of samples having

value Ek in class H.

� For Continuous (numeric) attribute:

– Pr(Ek|H) is calculated via a Normal or

Gaussian density function.

Chapter 4: Algorithms: The Basic Methods 22

Naïve Bayes classifier

� Having pre-calculated all Pr(Ek|H) to classify

an unknown sample E:

– Step 1: For all classes calculate P(H|E).

– Step 2: Assign sample E to the class with the

highest Pr(H|E).

Chapter 4: Algorithms: The Basic Methods 23

Naïve Bayes classifier

� E.g. Pr(outlook=sunny | play=yes) = 2/9

Pr(windy=true | play=No) = 3/9

Chapter 4: Algorithms: The Basic Methods 24

Probabilities for weather data

� A new day:

� Conversion into a probability by normalization:

Chapter 4: Algorithms: The Basic Methods 25

Bayes’s rule

� The hypothesis H (class) is that play will be

‘yes’ Pr[H|E] is 20.5%

� The evidence E is the particular combination

of attribute values for the new day:

outlook = sunny
temperature = cool
humidity = high
windy = true

Chapter 4: Algorithms: The Basic Methods 26

Weather data example

Chapter 4: Algorithms: The Basic Methods 27

The “zero-frequency problem”

� What if an attribute value doesn’t occur with every
class value?

– e.g. “Humidity = high” for class “yes” Probability will be
zero!

Pr [Humidity=High | yes]=0

– A posteriori probability will also be zero!

Pr [yes | E]=0

– (No matter how likely the other values are!)

� Correction: add 1 to the count for every attribute

value-class combination (Laplace estimator)

� Result: probabilities will never be zero!

Chapter 4: Algorithms: The Basic Methods 28

Modified probability estimates

� In some cases adding a constant different

from 1 might be more appropriate

� Example: attribute outlook for class ‘yes’

� Weights don’t need to be equal but they must
sum to 1 (p1, p2, and p3 sum to 1)

Chapter 4: Algorithms: The Basic Methods 29

Missing values

� Training: instance is not included in frequency count for

attribute value-class combination

� Classification: attribute will be omitted from calculation

� Example: if the value of outlook were missing in the

example

– Likelihood of “yes” = 3/9 x 3/9 x 3/9 x 9/14 = 0.0238

– Likelihood of “no” = 1/5 x 4/5 x 3/5 x 5/14 = 0.0343

– P(“yes”) = 0.0238 / (0.0238 + 0.0343) = 41%

– P(“no”) = 0.0343 / (0.0238 + 0.0343) = 59%

Chapter 4: Algorithms: The Basic Methods 30

Numeric attributes

� Usual assumption: attributes have a normal or Gaussian
probability distribution

� The probability density function for the normal distribution

is defined by two parameters:

� Sample mean µ

� Standard deviation σ

� Then the density function f(x) is:

Chapter 4: Algorithms: The Basic Methods 31

Statistics for weather data

Chapter 4: Algorithms: The Basic Methods 32

Example density value

� If we are considering a yes outcome when

temperature has a value of 66

� We just need to plug x = 66, µ = 73, and σ =
6.2 into the formula

� The value of the probability density function is:

Chapter 4: Algorithms: The Basic Methods 33

Classifying a new day

� A new day:

Chapter 4: Algorithms: The Basic Methods 34

Missing values

� Missing values during training are not included

in calculation of mean and standard deviation

Chapter 4: Algorithms: The Basic Methods 35

4.3 Constructing decision trees

Chapter 4: Algorithms: The Basic Methods 36

Constructing decision trees

� Strategy: top down

� Recursive divide-and-conquer

– First: select attribute for root node
Create branch for each possible attribute
value

– This splits instances into subsets
One for each branch extending from the node

– Then: repeat recursively for each branch,
using only instances that reach the branch

� Stop if all instances at a node have the same
class

Chapter 4: Algorithms: The Basic Methods 37

Which attribute to select?

Chapter 4: Algorithms: The Basic Methods 38

Which attribute to select?

Chapter 4: Algorithms: The Basic Methods 39

Criterion for attribute selection

� Which is the best attribute?

– Want to get the smallest tree

– Heuristic: choose the attribute that produces

the “purest” nodes

� Popular impurity criterion: information gain

– Information gain increases with the average

purity of the subsets

– It is measured in bits

� Strategy: choose attribute that gives greatest

information gain

Chapter 4: Algorithms: The Basic Methods 40

Criterion for attribute selection

� Nodes with homogeneous class distribution are
preferred

� Need a measure of node impurity:

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

Chapter 4: Algorithms: The Basic Methods 41

How to Find the Best Split

B?

Yes No

Node N3 Node N4

A?

Yes No

Node N1 Node N2

Before Splitting:

C0 N10

C1 N11

C0 N20

C1 N21

C0 N30

C1 N31

C0 N40

C1 N41

C0 N00

C1 N01

M0

M1 M2 M3 M4

M12 M34
Gain = M0 – M12 vs M0 – M34

Chapter 4: Algorithms: The Basic Methods 42

Computing information

� Given a probability distribution, the info required to
predict an event is the distribution’s entropy

� Entropy gives the information required in bits
(can involve fractions of bits!)

� Formula for computing the entropy:

� “High Entropy” means X is from a uniform (boring)
distribution

� “Low Entropy” means X is from a varied (peaks and
valleys) distribution

Chapter 4: Algorithms: The Basic Methods 43

Example: attribute Outlook

� Outlook = Sunny:
info([2,3])=entropy(2/5,3/5)=−2/5log(2/5)−3/5log(3/5)=0.971bits

� Outlook = Overcast:
info([4,0])=entropy(1,0)=−1log(1)−0log(0)=0 bits

� Outlook = Rainy:
info([2,3])=entropy(3/5,2/5)=−3/5log(3/5)−2/5log(2/5)=0.971bits

� Expected information for attribute:
info([3,2], [4,0], [3,2])=(5/14)×0.971+(4/14)×0+(5/14)×0.971=0.693
bits

Chapter 4: Algorithms: The Basic Methods 44

Computing information gain

� Information gain: information before splitting –
information after splitting:

gain(Outlook) = info([9,5]) – info([2,3],[4,0],[3,2])
= 0.940 – 0.693
= 0.247 bits

� Information gain for attributes from weather data:

gain(Outlook) = 0.247 bits
gain(Temperature) = 0.029 bits
gain(Humidity) = 0.152 bits
gain(Windy) = 0.048 bits

Chapter 4: Algorithms: The Basic Methods 45

Continuing to split

Chapter 4: Algorithms: The Basic Methods 46

Continuing to split

Chapter 4: Algorithms: The Basic Methods 47

Final decision tree

� Splitting stops when data can’t be split any further

Chapter 4: Algorithms: The Basic Methods 48

Wish list for a purity measure

� Properties we require from a purity measure:

– When node is pure, measure should be zero

– When impurity is maximal (i.e. all classes

equally likely), measure should be maximal

Chapter 4: Algorithms: The Basic Methods 49

Highly-branching attributes

� Problem: attributes with a large number of

values (extreme case: ID code)

� Subsets are more likely to be pure if there is a
large number of values

– Information gain is biased towards choosing

attributes with a large number of values

– This may result in selection of an attribute that

is non-optimal for prediction

� Another problem: fragmentation

Chapter 4: Algorithms: The Basic Methods 50

Weather data with ID code

Chapter 4: Algorithms: The Basic Methods 51

Tree stump for ID code attribute

� Entropy of split ‘ID Code’:

� Information gain is maximal for ID code
(namely 0.940 bits)

Chapter 4: Algorithms: The Basic Methods 52

Gain ratio

� Gain ratio: a modification of the information

gain

� Gain ratio takes number and size of branches
into account when choosing an attribute

– It corrects the information gain by taking the

intrinsic information of a split into account

� Intrinsic information: entropy of distribution of

instances into branches

Chapter 4: Algorithms: The Basic Methods 53

Computing the gain ratio

� Example: intrinsic information for Outlook split:

� Value of attribute decreases as intrinsic

information gets larger

� Gain ratio attribute =
gain attribute / intrinsic info attribute

� Gain ratio ID code =

0.247 bits / 1.577 bits = 1.157

Chapter 4: Algorithms: The Basic Methods 54

Gain ratios for weather data

Chapter 4: Algorithms: The Basic Methods 55

4.4 PRISM method

Chapter 4: Algorithms: The Basic Methods 56

Covering algorithms

� Convert decision tree into a rule set

– Straightforward, but rule set very complex

� Instead, can generate rule set directly

– for each class in turn find rule set that covers

all instances in it (excluding instances not in

the class)

� Called a covering approach:

– at each stage a rule is identified that “covers”

some of the instances

Chapter 4: Algorithms: The Basic Methods 57

Example: generating a rule

� Possible rule set for class “a”:

if true then class = a

Chapter 4: Algorithms: The Basic Methods 58

Example: generating a rule

� Possible rule set for class “a”:

Chapter 4: Algorithms: The Basic Methods 59

Example: generating a rule

� Possible rule set for class “a”:

Chapter 4: Algorithms: The Basic Methods 60

Decision tree for the same problem

� Corresponding decision tree: (produces

exactly the same predictions)

Chapter 4: Algorithms: The Basic Methods 61

Rules vs. trees

� Both methods might first split the dataset

using the x attribute and would probably end

up splitting it at the same place (x = 1.2)

� But: rule sets can be more clear when
decision trees suffer from replicated subtrees

� Also: in multiclass situations, covering

algorithm concentrates on one class at a time

whereas decision tree learner takes all

classes into account

Chapter 4: Algorithms: The Basic Methods 62

A simple covering algorithm

� It is called PRISM method for constructing

rules

� Generates a rule by adding tests that
maximize rule’s accuracy

� Divide-and-conquer algorithms choose an

attribute to maximize the information gain

� But: the covering algorithm chooses an

attribute–value pair to maximize the probability

of the desired classification

Chapter 4: Algorithms: The Basic Methods 63

A simple covering algorithm

� Each new test reduces rule’s coverage:

Chapter 4: Algorithms: The Basic Methods 64

Selecting a test

� Goal: maximize accuracy

– t total number of instances covered by rule

– p positive examples of the class covered by

rule

– t – p number of errors made by rule

– Select test that maximizes the ratio p/t

� We are finished when p/t = 1 or the set of
instances can’t be split any further

Chapter 4: Algorithms: The Basic Methods 65

Example: contact lens data

Chapter 4: Algorithms: The Basic Methods 66

Example: contact lens data

� To begin, we seek a rule:

� Possible tests:

Chapter 4: Algorithms: The Basic Methods 67

Create the rule

� Rule with best test added and covered instances:

Chapter 4: Algorithms: The Basic Methods 68

Further refinement

� Current state:

� Possible tests:

Chapter 4: Algorithms: The Basic Methods 69

Modified rule and resulting data

� Rule with best test added:

� Instances covered by modified rule:

Chapter 4: Algorithms: The Basic Methods 70

Further refinement

� Current state:

� Possible tests:

� Tie between the first and the fourth test

– We choose the one with greater coverage

Chapter 4: Algorithms: The Basic Methods 71

The result

� Final rule:

� Second rule for recommending “hard lenses”:
(built from instances not covered by first rule)

� These two rules cover all “hard lenses”:

– Process is repeated with other two classes

Chapter 4: Algorithms: The Basic Methods 72

Pseudo-code for PRISM

Chapter 4: Algorithms: The Basic Methods 73

Rules vs. decision lists

� PRISM with outer loop generates a decision

list for one class

– Subsequent rules are designed for rules that

are not covered by previous rules

– But: order doesn’t matter because all rules

predict the same class

� Outer loop considers all classes separately

– No order dependence implied

Chapter 4: Algorithms: The Basic Methods 74

Separate and conquer

� Methods like PRISM (for dealing with one

class) are separate-and-conquer algorithms:

– First, identify a useful rule

– Then, separate out all the instances it covers

– Finally, “conquer” the remaining instances

� Difference to divide-and-conquer methods:

– Subset covered by rule doesn’t need to be

explored any further

Chapter 4: Algorithms: The Basic Methods 75

4.5 Mining association rules

Chapter 4: Algorithms: The Basic Methods 76

Mining association rules

� Given a set of transactions, find rules that will

predict the occurrence of an item based on

the occurrences of other items in the

transaction

� Broad applications

– Basket data analysis, cross-marketing,

catalog design, sale campaign analysis

– Web log (click stream) analysis, DNA

sequence analysis, etc.

Chapter 4: Algorithms: The Basic Methods 77

Market basket analysis

Chapter 4: Algorithms: The Basic Methods 78

Market basket analysis

� Market-Basket transactions

� Example of Association Rules

{Diaper} → {Beer},
{Milk, Bread} → {Eggs, Coke},
{Beer, Bread} → {Milk},

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Chapter 4: Algorithms: The Basic Methods 79

Definitions: Item set

� Item: one test/attribute-value pair (e.g. Milk,

Bread)

� Item set: A collection of one or more items (e.g.

{Milk, Bread, Diaper})

� k-itemset: An itemset that contains k items

� Support count: Frequency of occurrence of an

itemset

� Frequent Itemset: An itemset whose support

count is greater than or equal to a minsup

Chapter 4: Algorithms: The Basic Methods 80

Definition: Association Rule

� Association Rule

– An implication expression of the form X → Y, where X and Y are
itemsets

– Example: {Milk, Diaper} → {Beer}

� Rule Evaluation Metrics

– Support (s): Fraction of transactions that contain both X and Y

– Confidence (c): Measures how often items in Y appear in
transactions that contain X

Chapter 4: Algorithms: The Basic Methods 81

Definition: Association Rule

� Example:
TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Beer}Diaper,Milk{ ⇒

4.0
5

2
==s

67.0
3

2
==c

Chapter 4: Algorithms: The Basic Methods 82

Association Rules

� Itemset X={x1, …, xk}

� Find all the rules X�Y with min confidence and support

– Support, s, probability that a transaction contains X∪Y

– Confidence, c, conditional probability that a transaction having X
also contains Y.

Customer

buys diaper

Customer

buys both

Customer

buys beer

Beer}Diaper{ ⇒

Chapter 4: Algorithms: The Basic Methods 83

Example

B, E, F40

A, D30

A, C20

A, B, C10

Items boughtTransaction-id

� Let min_support = 50%, min_conf = 50%:

– A � C (50%, 66.7%)

– C � A (50%, 100%)

Chapter 4: Algorithms: The Basic Methods 84

Association Rule Mining Task

� Given a set of transactions T, the goal of association
rule mining is to find all rules having

– support ≥ minsup threshold

– confidence ≥ minconf threshold

� Brute-force approach:

– List all possible association rules

– Compute the support and confidence for each rule

– Prune rules that fail the minsup and minconf
thresholds

⇒ Problem: Computational complexity!

Chapter 4: Algorithms: The Basic Methods 85

Frequent Itemset Generation

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCD

E

Given d items, there
are 2d possible
candidate itemsets

Chapter 4: Algorithms: The Basic Methods 86

Computational Complexity

� Given d unique items:

– Total number of itemsets = 2d

– Total number of possible association rules:

123 1

1

1 1

+−=
















 −
×







=

+

−

=

−

=

∑ ∑
dd

d

k

kd

j j

kd

k

d
R

If d=6, R = 602 rules

Chapter 4: Algorithms: The Basic Methods 87

Apriori Algorithm

� Let k=1

� Generate frequent itemsets of length 1

� Repeat until no new frequent itemsets are identified

– Generate length (k+1) candidate itemsets from length

k frequent itemsets

– Prune candidate itemsets containing subsets of length
k that are infrequent

– Count the support of each candidate by scanning the

dataset

– Eliminate candidates that are infrequent, leaving only

those that are frequent

Chapter 4: Algorithms: The Basic Methods 88

The Apriori Algorithm—An Example

Database TDB

1st scan

C1

L1

L2

C2 C2

2nd scan

C3 L33rd scan

B, E40

A, B, C, E30

B, C, E20

A, C, D10

ItemsTid

1{D}

3{E}

3{C}

3{B}

2{A}

supItemset

3{E}

3{C}

3{B}

2{A}

supItemset

{C, E}

{B, E}

{B, C}

{A, E}

{A, C}

{A, B}

Itemset
1{A, B}

2{A, C}

1{A, E}

2{B, C}

3{B, E}

2{C, E}

supItemset

2{A, C}

2{B, C}

3{B, E}

2{C, E}

supItemset

{B, C, E}

Itemset

2{B, C, E}

supItemset

Supmin = 2

Chapter 4: Algorithms: The Basic Methods 89

The Apriori Algorithm

� Pseudo-code:

Ck: Candidate itemset of size k

Lk : frequent itemset of size k

L1 = {frequent items};

for (k = 1; Lk !=∅; k++) do begin

Ck+1 = candidates generated from Lk;

for each transaction t in database do

increment the count of all candidates in Ck+1

that are contained in t

Lk+1 = candidates in Ck+1 with min_support

end

return ∪k Lk;

Chapter 4: Algorithms: The Basic Methods 90

Important Details of Apriori

� How to generate candidates?

– Step 1: self-joining Lk

– Step 2: pruning

� How to count supports of candidates?

� Example of Candidate-generation

– L3={abc, abd, acd, ace, bcd}

– Self-joining: L3*L3

�abcd from abc and abd

�acde from acd and ace

– Pruning:

�acde is removed because ade is not in L3

– C4={abcd}

Chapter 4: Algorithms: The Basic Methods 91

Weather data

Chapter 4: Algorithms: The Basic Methods 92

Item sets for weather data

� In total: 12 one-item sets, 47 two-item sets, 39 Three-
item sets, 6 four-item sets and 0 five-item sets (with

minimum support of two)

Chapter 4: Algorithms: The Basic Methods 93

Generating rules from an item set

� Once all item sets with minimum support have

been generated, we can turn them into rules

� Seven potential rules:

Chapter 4: Algorithms: The Basic Methods 94

Rules for weather data

� Rules with support > 1 and confidence = 100%:

� In total: 3 rules with support four, 5 with

support three, 50 with support two

Chapter 4: Algorithms: The Basic Methods 95

Example rules from the same set

� Item set:

� Resulting rules (all with 100% confidence):

� Three subsets of this item set also have coverage 2:

Chapter 4: Algorithms: The Basic Methods 96

Generating rules efficiently

� We are looking for all high-confidence rules

– But: rough method is (2N-1)

� Better way: building (c + 1) consequent rules

from c consequent ones

– Observation: (c + 1) consequent rule can only

hold if all corresponding c consequent rules

also hold

� Resulting algorithm similar to procedure for

large item sets

Chapter 4: Algorithms: The Basic Methods 97

Example

� 1 consequent rules:

� Corresponding 2 consequent rule:

Chapter 4: Algorithms: The Basic Methods 98

4.6 Linear models

Chapter 4: Algorithms: The Basic Methods 99

Linear regression

� Work most naturally with numeric attributes

� Standard technique for numeric prediction

� Linear regression: Data are modeled to fit a
straight line

� Linear regression involves a response variable y
and a single predictor variable x

y = w0 + w1 x

– where w0 (y-intercept) and w1 (slope) are
regression coefficients

– Two regression coefficients, w and b, specify
the line

Chapter 4: Algorithms: The Basic Methods 100

Linear regression

� Method of least squares: estimates the best-fitting straight line

� D: a training set consisting of values of predictor variable

� |D| data points of the form(x1, y1), (x2, y2),…, (x|D|, y|D|).

� where x is the mean value of x1, x2, : : : , x|D|, and y is the

mean value of y1, y2, : : : , y|D|.

Chapter 4: Algorithms: The Basic Methods 101

Example: Salary data

Chapter 4: Algorithms: The Basic Methods 102

Example: Salary data

Linear Regression: Y=3.5*X+23.2

0

20

40

60

80

100

120

0 5 10 15 20 25

Years

S
al

ar
y

Chapter 4: Algorithms: The Basic Methods 103

Multiple linear regression

� Multiple linear regression involves more than

one predictor variable

� Training data is of the form (X1, y1), (X2, y2),…,
(X|D|, y|D|)

� where the Xi are the n-dimensional training

data with associated class labels, yi

� An example of a multiple linear regression
model based on two predictor attributes:

Chapter 4: Algorithms: The Basic Methods 104

Linear Regression: CPU performance data

Chapter 4: Algorithms: The Basic Methods 105

4.7 k-nearest neighbor algorithm

Chapter 4: Algorithms: The Basic Methods 106

Example Problem: Face Recognition

� We have a database of (say) 1 million face
images

� We are given a new image and want to find
the most similar images in the database

� Represent faces by (relatively) invariant
values, e.g., ratio of nose width to eye width

� Each image represented by a large number of
numerical features

� Problem: given the features of a new face,
find those in the DB that are close in at least
¾ (say) of the features

Chapter 4: Algorithms: The Basic Methods 107

k-nearest neighbor algorithm

� k-Nearest neighbor is an example of instance-based
learning

� Distance function defines what’s learned

� A classification for a new unclassified record may be
found simply by comparing it to the most similar
records in the training set

� Example:

– We are interested in classifying the type of drug a
patient should be prescribed

– Based on the age of the patient and the patient’s
sodium/potassium ratio (Na/K)

– Dataset includes 200 patients

Chapter 4: Algorithms: The Basic Methods 108

Scatter plot

On the scatter plot; light gray points indicate drug Y; medium gray points indicate

drug A or X; dark gray points indicate drug B or C

Chapter 4: Algorithms: The Basic Methods 109

Close-up of neighbors to new patient 2

� k=1 => drugs B and C (dark gray)

� k=2 => ?

� K=3 => drugs A and X (medium gray)

� Main questions:
– How many neighbors should we consider? That is,

what is k?

– How do we measure distance?

– Should all points be weighted equally, or should some
points have more influence than others?

Chapter 4: Algorithms: The Basic Methods 110

Instance-based learning

� Most instance-based schemes use Euclidean
distance:

� a(1) and a(2): two instances with k attributes

� Taking the square root is not required when
comparing distances

� Other popular metric: Manhattan or city-block
metric

– Taking absolute differences value without
squaring them

Chapter 4: Algorithms: The Basic Methods 111

Normalization and other issues

� Different attributes are measured on different scales,
need to be normalized:

vi : the actual value of attribute i

all attribute values lie between 0 and 1

� Nominal attributes: distance either 0 or 1

� Common policy for missing values: assumed to be

maximally distant (given normalized attributes)

Chapter 4: Algorithms: The Basic Methods 112

Finding nearest neighbors efficiently

� Simplest way of finding nearest neighbor:
linear scan of the data

– Classification takes time proportional to the
product of the number of instances in training
and test sets

� Nearest-neighbor search can be done more
efficiently using appropriate data structures

� There two methods that represent training
data in a tree structure:

– kD-trees (k-dimensional trees)

– Ball trees

Chapter 4: Algorithms: The Basic Methods 113

kD-tree example

Chapter 4: Algorithms: The Basic Methods 114

Using kD-trees: example

Chapter 4: Algorithms: The Basic Methods 115

More on kD-trees

� Complexity depends on depth of tree, given by

base 2 logarithm of number of nodes

� Amount of backtracking required depends on
quality of tree

� How to build a good tree? Need to find good

split point and split direction

– Split direction: direction with greatest variance

– Split point: median value or value closest to

mean along that direction

� Can apply this recursively

Chapter 4: Algorithms: The Basic Methods 116

Building trees incrementally

� Big advantage of instance-based learning:

classifier can be updated incrementally

– Just add new training instance!

� We can do the same with kD-trees

� Heuristic strategy:

– Find leaf node containing new instance

– Place instance into leaf if leaf is empty

– Otherwise, split leaf

� Tree should be rebuilt occasionally

Chapter 4: Algorithms: The Basic Methods 117

Ball trees

� Problem in kD-trees: corners

� Can use balls (hyperspheres) instead of
hyperrectangles

– no need to make sure that regions don't

overlap

– A ball tree organizes the data into a tree of k-

dimensional hyperspheres

– Normally allows for a better fit to the data and

thus more efficient search

Chapter 4: Algorithms: The Basic Methods 118

Ball tree for 16 training instances

Chapter 4: Algorithms: The Basic Methods 119

Using ball trees

� Nearest-neighbor search is done using the same

backtracking strategy as in kD-trees

� Ball can be ruled out from consideration if: distance

from target to ball's center exceeds ball's radius plus

current upper bound

Chapter 4: Algorithms: The Basic Methods 120

Building ball trees

� Ball trees are built top down (like kD-trees)

� Don't have to continue until leaf balls contain
just two points: can enforce minimum
occupancy (same in kD-trees)

� Basic problem: splitting a ball into two

� Simple (linear-time) split selection strategy:

– Choose point farthest from ball's center

– Choose second point farthest from first one

– Assign each point to these two points

– Compute cluster centers and minimum radius
based on the two subsets to get two balls

Chapter 4: Algorithms: The Basic Methods 121

4.8 Clustering: k-means method

Chapter 4: Algorithms: The Basic Methods 122

Example: Clustering Documents

� Represent a document by a vector (x1, x2,…,

xk), where xi = 1 if the i th word (in some order)

appears in the document.

� Documents with similar sets of words may be
about the same topic.

Chapter 4: Algorithms: The Basic Methods 123

Clustering

� Clustering techniques apply when there is no class to
be predicted

� Aim: divide instances into “natural” groups

� As we've seen clusters can be:

– disjoint vs. overlapping

– deterministic vs. probabilistic

– flat vs. hierarchical

� We'll look at a classic clustering algorithm called k-

means

– K-means clusters are disjoint, deterministic, and flat

Chapter 4: Algorithms: The Basic Methods 124

Examples of Clustering Applications

� Marketing: Help marketers discover distinct groups in their

customer bases, and then use this knowledge to develop targeted

marketing programs

� Land use: Identification of areas of similar land use in an earth

observation database

� Insurance: Identifying groups of motor insurance policy holders

with a high average claim cost

� City-planning: Identifying groups of houses according to their

house type, value, and geographical location

� Documenting: with similar sets of words may be about the same
topic

Chapter 4: Algorithms: The Basic Methods 125

The k-means algorithm

To cluster data into k groups:
(k is predefined)

1. Choose k cluster centers

– e.g. first time at random, then mean point

2. Assign instances to clusters

– based on distance to cluster centers with the nearest

point

3. Compute centroids or mean of clusters and they
are taken to be new center values

4. Go to step 1

– until convergence

Chapter 4: Algorithms: The Basic Methods 126

Example: The K-Means Clustering Method

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

K=2

Arbitrarily choose K
object as initial
cluster center

Assign
each
objects
to most
similar
center

Update
the
cluster
means

Update
the
cluster
means

reassignreassign

Chapter 4: Algorithms: The Basic Methods 127

The criterion function

� The square-error criterion

– where E is the sum of the square error for all objects

in the data set;

– p is the point in space representing a given object;

and

– mi is the mean of cluster Ci (both p and mi are
multidimensional)

Chapter 4: Algorithms: The Basic Methods 128

Weakness of K-means method

� Often terminate at a local optimum, The global optimum
may be found using techniques such as: deterministic
annealing and genetic algorithms

� Applicable only when mean is defined, then what about

categorical data?

� Need to specify k, the number of clusters, in advance

� Unable to handle noisy data and outliers

+
+

Chapter 4: Algorithms: The Basic Methods 129

The end of
Chapter 4: Algorithms:

The Basic Methods

