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Simplicity first

� Simple algorithms often work very well!

� There are many kinds of simple structure, eg:

– One attribute does all the work

– All attributes contribute equally & 

independently

– A few attributes can be captured by a decision 

tree

– Use simple logical rules

– A weighted linear combination might do

– Instance-based: use a few prototypes
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Algorithms: The basic methods

� 1R Algorithm

� Naïve Bayes Classifier

� Constructing decision trees

� PRISM method

� Mining association rules

� Linear models

� k-nearest neighbor algorithm

� Clustering: k-means method
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4.1  1R algorithm
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1R algorithm

� An easy way to find very simple classification rule

� 1R: rules that all test one particular attribute

� Basic version

– One branch for each value

– Each branch assigns most frequent class

– Error rate: proportion of instances that don’t belong to 

the majority class of their corresponding branch

– Choose attribute with lowest error rate (assumes 
nominal attributes)

� “Missing” is treated as a separate attribute value
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Pseudo-code or 1R Algorithm
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Example: The weather problem
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Evaluating the weather attributes
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The attribute with the smallest number of errors
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Dealing with numeric attributes

� Discretize numeric attributes

� Divide each attribute’s range into intervals

– Sort instances according to attribute’s values

– Place breakpoints where class changes 

(majority class)

– This minimizes the total error
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Weather data with some numeric attributes
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Example: temperature from weather data

� Discretization involves partitioning this 

sequence by placing breakpoints wherever the 

class changes,
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The problem of overfitting

� Overfitting is likely to occur whenever an 

attribute has a large  number of possible 

values

� This procedure is very sensitive to noise

– One instance with an incorrect class label will 

probably produce a separate interval

� Attribute will have zero errors

� Simple solution:  enforce minimum number of 
instances in majority  class per interval



Chapter 4: Algorithms: The Basic Methods 14

Minimum is set at 3 for temperature attribute

� The partitioning process begins

� the next example is also yes, we lose nothing 

by including that in the first partition

� Thus the final discretization is

� the rule set
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Resulting rule set with overfitting avoidance
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4.2  Naïve Bayes Classifier
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Naïve Bayes Classifier

� “Opposite” of 1R: use all the attributes

� Two assumptions: Attributes are

– equally important

– statistically independent 

� I.e., knowing the value of one attribute says 

nothing about the value of another

� Equally important & independence 

assumptions are never correct in real-life 
datasets
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Bayes Theorem

� Probability of event H given evidence E:

� Pr[H]: A priori probability of H

– Probability of event before evidence is seen

� Pr[H|E]: posteriori probability of H

– The probability of H conditional on E

� Pr[E|H]: Posterior probability of X

� Pr[E]: A priori probability of E
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Naïve Bayes for classification

� Classification learning: what’s the 
probability of the class given an instance?

– Evidence E = instance

– Event H = class value for instance

� Naïve assumption: evidence splits into parts 

(i.e. attributes) that are independent
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Naïve Bayes classifier

� Hypothesis H is the class.

� Pr  [E]: can be ignored as it is constant for all 
classes.

� Pr(H) is the ratio of total samples in class H to 

all samples.
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Naïve Bayes classifier

� For Categorical attribute:

– Pr(Ek|H) is the frequency of samples having 

value Ek in class H.

� For Continuous (numeric) attribute:

– Pr(Ek|H) is calculated via a Normal or 

Gaussian density function.
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Naïve Bayes classifier

� Having pre-calculated all Pr(Ek|H) to classify 

an unknown sample E:

– Step 1: For all classes calculate P(H|E).

– Step 2: Assign sample E to the class with the 

highest Pr(H|E).
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Naïve Bayes classifier

� E.g. Pr(outlook=sunny | play=yes) = 2/9

Pr(windy=true | play=No) = 3/9
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Probabilities for weather data

� A new day:

� Conversion into a probability by normalization:
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Bayes’s rule

� The hypothesis H (class) is that play will be 

‘yes’ Pr[H|E] is 20.5%

� The evidence E is the particular combination 

of attribute values for the new day:

outlook = sunny
temperature = cool
humidity = high
windy = true
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Weather data example
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The “zero-frequency problem”

� What if an attribute value doesn’t occur with every 
class value?

– e.g. “Humidity = high” for class “yes” Probability will be 
zero! 

Pr [Humidity=High | yes]=0

– A posteriori probability will also be zero!

Pr [yes | E]=0

– (No matter how likely the other values are!)

� Correction: add 1 to the count for every attribute 

value-class combination (Laplace estimator)

� Result: probabilities will never be zero!
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Modified probability estimates

� In some cases adding a constant different 

from 1 might be more appropriate

� Example: attribute outlook for class ‘yes’

� Weights don’t need to be equal  but they must 
sum to 1 (p1, p2, and p3 sum to 1)
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Missing values

� Training: instance is not included in frequency count for 

attribute value-class combination

� Classification: attribute will be omitted from calculation

� Example: if the value of outlook were missing  in the 

example

– Likelihood of “yes” = 3/9 x 3/9 x 3/9 x 9/14 = 0.0238

– Likelihood of “no” = 1/5 x 4/5 x 3/5 x 5/14 = 0.0343

– P(“yes”) = 0.0238 / (0.0238 + 0.0343) = 41%

– P(“no”) = 0.0343 / (0.0238 + 0.0343) = 59%
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Numeric attributes

� Usual assumption: attributes have a normal or Gaussian 
probability distribution

� The probability density function for the normal distribution 

is defined by two parameters:

� Sample mean µ

� Standard deviation σ

� Then the density function f(x) is:
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Statistics for weather data
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Example density value

� If we are considering a yes outcome when 

temperature has a value of 66

� We just need to plug x = 66, µ = 73, and σ = 
6.2 into the formula

� The value of the probability density function is:
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Classifying a new day

� A new day:
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Missing values

� Missing values during training are not  included 

in calculation of mean and standard deviation
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4.3 Constructing decision trees
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Constructing decision trees

� Strategy: top down

� Recursive divide-and-conquer

– First: select attribute for root node 
Create branch for each possible attribute 
value

– This splits instances into subsets
One for each branch extending from the node

– Then: repeat recursively for each branch, 
using only instances that reach the branch

� Stop if all instances at a node have the same 
class
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Which attribute to select?
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Which attribute to select?
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Criterion for attribute selection

� Which is the best attribute?

– Want to get the smallest tree

– Heuristic: choose the attribute that produces 

the “purest” nodes

� Popular impurity criterion: information gain

– Information gain increases with the average 

purity of the subsets

– It is measured in bits

� Strategy: choose attribute that gives greatest  

information gain
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Criterion for attribute selection

� Nodes with homogeneous class distribution are 
preferred

� Need a measure of node impurity:

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity
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How to Find the Best Split

B?

Yes No

Node N3 Node N4

A?

Yes No

Node N1 Node N2

Before Splitting:

C0 N10 

C1 N11 
 

 

C0 N20 

C1 N21 
 

 

C0 N30 

C1 N31 
 

 

C0 N40 

C1 N41 
 

 

C0 N00 

C1 N01 
 

 

M0

M1 M2 M3 M4

M12 M34
Gain = M0 – M12 vs M0 – M34
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Computing information

� Given a probability distribution, the info required to 
predict an event is the distribution’s entropy

� Entropy gives the information required in bits
(can involve fractions of bits!)

� Formula for computing the entropy:

� “High Entropy” means X is from a uniform (boring) 
distribution

� “Low Entropy” means X is from a varied (peaks and 
valleys) distribution
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Example: attribute Outlook

� Outlook = Sunny: 
info([2,3])=entropy(2/5,3/5)=−2/5log(2/5)−3/5log(3/5)=0.971bits

� Outlook = Overcast:
info([4,0])=entropy(1,0)=−1log(1)−0log(0)=0 bits

� Outlook = Rainy:
info([2,3])=entropy(3/5,2/5)=−3/5log(3/5)−2/5log(2/5)=0.971bits

� Expected information for attribute:
info([3,2], [4,0], [3,2])=(5/14)×0.971+(4/14)×0+(5/14)×0.971=0.693 
bits
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Computing information gain

� Information gain: information before splitting –
information after splitting:

gain(Outlook ) = info([9,5]) – info([2,3],[4,0],[3,2])
= 0.940 – 0.693
= 0.247 bits

� Information gain for attributes from weather data:

gain(Outlook ) = 0.247 bits
gain(Temperature ) = 0.029 bits
gain(Humidity ) = 0.152 bits
gain(Windy ) = 0.048 bits
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Continuing to split
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Continuing to split



Chapter 4: Algorithms: The Basic Methods 47

Final decision tree

� Splitting stops when data can’t be split any further
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Wish list for a purity measure

� Properties we require from a purity measure:

– When node is pure, measure should be zero

– When impurity is maximal (i.e. all classes 

equally likely), measure should be maximal
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Highly-branching attributes

� Problem: attributes with a large number of 

values (extreme case: ID code) 

� Subsets are more likely to be pure if there is a 
large number of values

– Information gain is biased towards choosing 

attributes with a large number of values 

– This may result in selection of an attribute that 

is non-optimal for prediction

� Another problem: fragmentation
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Weather data with ID code
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Tree stump for ID code attribute

� Entropy of split ‘ID Code’:

� Information gain is maximal for ID code
(namely 0.940 bits)
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Gain ratio

� Gain ratio: a modification of the information 

gain

� Gain ratio takes number and size of branches 
into account when choosing an attribute

– It corrects the information gain by taking the 

intrinsic information of a split into account 

� Intrinsic information: entropy of distribution of 

instances into branches
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Computing the gain ratio

� Example: intrinsic information for Outlook split:

� Value of attribute decreases as intrinsic  

information gets larger

� Gain ratio attribute = 
gain attribute / intrinsic info attribute

� Gain ratio ID code = 

0.247 bits / 1.577 bits = 1.157
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Gain ratios for weather data
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4.4  PRISM method
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Covering algorithms

� Convert decision tree into a rule set

– Straightforward, but rule set very complex

� Instead, can generate rule set directly

– for each class in turn find rule set that covers 

all instances in it (excluding instances not in 

the class)

� Called a covering approach:

– at each stage a rule is identified that “covers” 

some of the instances
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Example: generating a rule

� Possible rule set for class “a”:

if true then class = a
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Example: generating a rule

� Possible rule set for class “a”:
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Example: generating a rule

� Possible rule set for class “a”:
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Decision tree for the same problem

� Corresponding decision tree: (produces 

exactly the same predictions)
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Rules vs. trees

� Both methods might first split the dataset 

using the x attribute and would probably end 

up splitting it at the same place (x = 1.2)

� But: rule sets can be more clear when 
decision trees suffer from replicated subtrees

� Also: in multiclass situations, covering 

algorithm concentrates on one class at a time 

whereas decision tree learner takes all 

classes into account
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A simple covering algorithm

� It is called PRISM method for constructing 

rules 

� Generates a rule by adding tests that 
maximize rule’s accuracy

� Divide-and-conquer algorithms choose an 

attribute to maximize the information gain

� But: the covering algorithm chooses an 

attribute–value pair to maximize the probability 

of the desired classification
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A simple covering algorithm

� Each new test reduces rule’s coverage:
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Selecting a test

� Goal: maximize accuracy

– t total number of instances covered by rule

– p positive examples of the class covered by 

rule

– t – p number of errors made by rule

– Select test that maximizes the ratio p/t

� We are finished when p/t = 1 or the set of 
instances can’t be split any further
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Example: contact lens data
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Example: contact lens data

� To begin, we seek a rule:

� Possible tests:
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Create the rule

� Rule with best test added and covered instances:
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Further refinement

� Current state:

� Possible tests:
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Modified rule and resulting data

� Rule with best test added:

� Instances covered by modified rule:
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Further refinement

� Current state:

� Possible tests:

� Tie between the first and the fourth test

– We choose the one with greater coverage
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The result

� Final rule:

� Second rule for recommending “hard lenses”:
(built from instances not covered by first rule)

� These two rules cover all “hard lenses”:

– Process is repeated with other two classes



Chapter 4: Algorithms: The Basic Methods 72

Pseudo-code  for PRISM
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Rules vs. decision lists

� PRISM with outer loop generates a decision 

list for one class

– Subsequent rules are designed for rules that 

are not covered by previous rules

– But: order doesn’t matter because all rules 

predict the same class

� Outer loop considers all classes separately

– No order dependence implied
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Separate and conquer

� Methods like PRISM (for dealing with one  

class) are separate-and-conquer algorithms:

– First, identify a useful rule

– Then, separate out all the instances it covers

– Finally, “conquer” the remaining instances

� Difference to divide-and-conquer methods:

– Subset covered by rule doesn’t need to be 

explored any further
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4.5 Mining association rules
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Mining association rules

� Given a set of transactions, find rules that will 

predict the occurrence of an item based on 

the occurrences of other items in the 

transaction

� Broad applications

– Basket data analysis, cross-marketing, 

catalog design, sale campaign analysis

– Web log (click stream) analysis, DNA 

sequence analysis, etc.
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Market basket analysis



Chapter 4: Algorithms: The Basic Methods 78

Market basket analysis

� Market-Basket transactions

� Example of Association Rules

{Diaper} → {Beer},
{Milk, Bread} → {Eggs, Coke},
{Beer, Bread} → {Milk},

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
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Definitions: Item set

� Item: one test/attribute-value pair (e.g. Milk, 

Bread)

� Item set: A collection of one or more items (e.g. 

{Milk, Bread, Diaper})

� k-itemset: An itemset that contains k items

� Support count: Frequency of occurrence of an 

itemset

� Frequent Itemset: An itemset whose support 

count is greater than or equal to a minsup



Chapter 4: Algorithms: The Basic Methods 80

Definition: Association Rule

� Association Rule

– An implication expression of the form X → Y, where X and Y are 
itemsets

– Example: {Milk, Diaper} → {Beer}

� Rule Evaluation Metrics

– Support (s): Fraction of transactions that contain both X and Y

– Confidence (c): Measures how often items in Y appear in 
transactions that contain X
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Definition: Association Rule

� Example:
TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 

Beer}Diaper,Milk{ ⇒

4.0
5

2
==s

67.0
3

2
==c
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Association Rules

� Itemset X={x1, …, xk}

� Find all the rules X�Y with min confidence and support

– Support, s, probability that a transaction contains X∪Y

– Confidence, c, conditional probability that a transaction having X 
also contains Y.

Customer

buys diaper

Customer

buys both

Customer

buys beer

Beer}Diaper{ ⇒
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Example

B, E, F40

A, D30

A, C20

A, B, C10

Items boughtTransaction-id

� Let  min_support = 50%,    min_conf = 50%:

– A � C  (50%, 66.7%)

– C � A  (50%, 100%)
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Association Rule Mining Task

� Given a set of transactions T, the goal of association 
rule mining is to find all rules having 

– support ≥ minsup threshold

– confidence ≥ minconf threshold

� Brute-force approach:

– List all possible association rules

– Compute the support and confidence for each rule

– Prune rules that fail the minsup and minconf
thresholds

⇒ Problem: Computational complexity!
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Frequent Itemset Generation

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCD

E

Given d items, there 
are 2d possible 
candidate itemsets
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Computational Complexity

� Given d unique items:

– Total number of itemsets = 2d

– Total number of possible association rules:

123 1
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Apriori Algorithm

� Let k=1

� Generate frequent itemsets of length 1

� Repeat until no new frequent itemsets are identified

– Generate length (k+1) candidate itemsets from length 

k frequent itemsets

– Prune candidate itemsets containing subsets of length 
k that are infrequent 

– Count the support of each candidate by scanning the 

dataset

– Eliminate candidates that are infrequent, leaving only 

those that are frequent
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The Apriori Algorithm—An Example

Database TDB

1st scan

C1

L1

L2

C2 C2

2nd scan

C3 L33rd scan

B, E40

A, B, C, E30

B, C, E20

A, C, D10

ItemsTid

1{D}

3{E}

3{C}

3{B}

2{A}

supItemset

3{E}

3{C}

3{B}

2{A}

supItemset

{C, E}

{B, E}

{B, C}

{A, E}

{A, C}

{A, B}

Itemset
1{A, B}

2{A, C}

1{A, E}

2{B, C}

3{B, E}

2{C, E}

supItemset

2{A, C}

2{B, C}

3{B, E}

2{C, E}

supItemset

{B, C, E}

Itemset

2{B, C, E}

supItemset

Supmin = 2
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The Apriori Algorithm

� Pseudo-code:

Ck: Candidate itemset of size k

Lk : frequent itemset of size k

L1 = {frequent items};

for (k = 1; Lk !=∅; k++) do begin

Ck+1 = candidates generated from Lk;

for each transaction t in database do

increment the count of all candidates in Ck+1

that are contained in t

Lk+1 = candidates in Ck+1 with min_support

end

return ∪k Lk;
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Important Details of Apriori

� How to generate candidates?

– Step 1: self-joining Lk

– Step 2: pruning

� How to count supports of candidates?

� Example of Candidate-generation

– L3={abc, abd, acd, ace, bcd}

– Self-joining: L3*L3

�abcd from abc and abd

�acde from acd and ace

– Pruning:

�acde is removed because ade is not in L3

– C4={abcd}
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Weather data
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Item sets for weather data

� In total: 12 one-item sets, 47 two-item sets, 39 Three-
item sets, 6 four-item sets and 0 five-item sets (with 

minimum support of two)
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Generating rules from an item set

� Once all item sets with minimum support have 

been generated, we can turn them into rules

� Seven potential rules:
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Rules for weather data

� Rules with support > 1 and confidence = 100%:

� In total:  3 rules with support four, 5 with 

support three, 50 with support two
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Example rules from the same set

� Item set:

� Resulting rules (all with 100% confidence):

� Three subsets of this item set also have coverage 2:
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Generating rules efficiently

� We are looking for all high-confidence rules

– But: rough method is (2N-1)

� Better way: building (c + 1) consequent rules 

from c consequent ones

– Observation: (c + 1) consequent rule can only 

hold if all corresponding c consequent rules 

also hold

� Resulting algorithm similar to procedure for 

large item sets
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Example

� 1 consequent rules:

� Corresponding 2 consequent rule:
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4.6 Linear models
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Linear regression

� Work most naturally with numeric attributes

� Standard technique for numeric prediction

� Linear regression: Data are modeled to fit a 
straight line

� Linear regression involves a response variable y 
and a single predictor variable x

y = w0 + w1 x

– where w0 (y-intercept) and w1 (slope) are 
regression coefficients

– Two regression coefficients, w and b, specify 
the line
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Linear regression

� Method of least squares: estimates the best-fitting straight line

� D: a training set consisting of values of predictor variable

� |D| data points of the form(x1, y1), (x2, y2),…, (x|D|, y|D|).

� where x is the mean value of x1, x2, : : : , x|D|, and y is the 

mean value of y1, y2, : : : , y|D|.
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Example: Salary data
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Example: Salary data

Linear Regression: Y=3.5*X+23.2
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Multiple linear regression

� Multiple linear regression involves more than 

one predictor variable

� Training data is of the form (X1, y1), (X2, y2),…, 
(X|D|, y|D|)

� where the Xi are the n-dimensional training 

data with associated class labels, yi

� An example of a multiple linear regression 
model based on two predictor attributes:
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Linear Regression: CPU performance data
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4.7 k-nearest neighbor algorithm
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Example Problem: Face Recognition

� We have a database of (say) 1 million face 
images

� We are given a new image and want to find 
the most similar images in the database

� Represent faces by (relatively) invariant 
values, e.g., ratio of nose width to eye width

� Each image represented by a large number of 
numerical features

� Problem: given the features of a new face, 
find those in the DB that are close in at least 
¾ (say) of the features
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k-nearest neighbor algorithm

� k-Nearest neighbor is an example of instance-based 
learning

� Distance function defines what’s learned

� A classification for a new unclassified record may be 
found simply by comparing it to the most similar 
records in the training set

� Example:

– We are interested in classifying the type of drug a 
patient should be prescribed

– Based on the age of the patient and the patient’s 
sodium/potassium ratio (Na/K)

– Dataset includes  200 patients
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Scatter plot

On the scatter plot; light gray points indicate drug Y; medium gray points indicate 

drug A or X; dark gray points indicate drug B or C
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Close-up of neighbors to new patient 2

� k=1 => drugs B and C (dark gray)

� k=2 => ?

� K=3 => drugs A and X (medium gray)

� Main questions:
– How many neighbors should we consider? That is, 

what is k?

– How do we measure distance?

– Should all points be weighted equally, or should some 
points have more influence than others?
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Instance-based learning

� Most instance-based schemes use Euclidean 
distance:

� a(1) and a(2): two instances with k attributes

� Taking the square root is not required when 
comparing distances

� Other popular metric: Manhattan or  city-block 
metric

– Taking absolute differences value without 
squaring them
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Normalization and other issues

� Different attributes are measured on different scales, 
need to be normalized:

vi : the actual value of attribute i

all attribute values lie between 0 and 1

� Nominal attributes: distance either 0 or 1

� Common policy for missing values: assumed to be 

maximally distant (given normalized attributes)



Chapter 4: Algorithms: The Basic Methods 112

Finding nearest neighbors efficiently

� Simplest way of finding nearest neighbor: 
linear scan of the data

– Classification takes time proportional to the 
product of the number of instances in training 
and test sets

� Nearest-neighbor search can be done more 
efficiently using appropriate data structures

� There two methods that represent training 
data in a tree structure:

– kD-trees (k-dimensional trees)

– Ball trees
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kD-tree example
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Using kD-trees: example
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More on kD-trees

� Complexity depends on depth of tree, given by 

base 2 logarithm of number of nodes

� Amount of backtracking required depends on 
quality of tree 

� How to build a good tree? Need to find good 

split point and split direction

– Split direction: direction with greatest variance

– Split point: median value or value closest to 

mean along that direction

� Can apply this recursively
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Building trees incrementally

� Big advantage of instance-based learning: 

classifier can be updated incrementally

– Just add new training instance!

� We can do the same with kD-trees

� Heuristic strategy:

– Find leaf node containing new instance

– Place instance into leaf if leaf is empty

– Otherwise, split leaf 

� Tree should be rebuilt occasionally
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Ball trees

� Problem in kD-trees: corners

� Can use balls (hyperspheres) instead of 
hyperrectangles

– no need to make sure that regions don't 

overlap

– A ball tree organizes the data into a tree of k-

dimensional hyperspheres

– Normally allows for a better fit to the data and 

thus more efficient search
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Ball tree for 16 training instances
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Using ball trees

� Nearest-neighbor search is done using the same 

backtracking strategy as in kD-trees

� Ball can be ruled out from consideration if: distance 

from target to ball's center exceeds ball's radius plus 

current upper bound
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Building ball trees

� Ball trees are built top down (like kD-trees)

� Don't have to continue until leaf balls contain 
just two points: can enforce minimum 
occupancy (same in kD-trees)

� Basic problem: splitting a ball into two

� Simple (linear-time) split selection strategy:

– Choose point farthest from ball's center

– Choose second point farthest from first one

– Assign each point to these two points

– Compute cluster centers and minimum radius 
based on the two subsets to get two balls
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4.8 Clustering: k-means method
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Example: Clustering Documents

� Represent a document by a vector    (x1, x2,…, 

xk), where xi = 1 if the i th word (in some order) 

appears in the document.

� Documents with similar sets of words may be 
about the same topic.
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Clustering

� Clustering techniques apply when there is no class to 
be predicted

� Aim: divide instances into “natural” groups

� As we've seen clusters can be:

– disjoint vs. overlapping

– deterministic vs. probabilistic

– flat vs. hierarchical

� We'll look at a classic clustering algorithm called k-

means

– K-means clusters are disjoint, deterministic, and flat
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Examples of Clustering Applications

� Marketing: Help marketers discover distinct groups in their 

customer bases, and then use this knowledge to develop targeted 

marketing programs

� Land use: Identification of areas of similar land use in an earth 

observation database

� Insurance: Identifying groups of motor insurance policy holders 

with a high average claim cost

� City-planning: Identifying groups of houses according to their 

house type, value, and geographical location

� Documenting: with similar sets of words may be about the same 
topic
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The k-means algorithm

To cluster data into k groups:
(k is predefined)

1. Choose k cluster centers

– e.g. first time at random, then mean point

2. Assign instances to clusters

– based on distance to cluster centers with the nearest 

point 

3. Compute centroids or mean of clusters and they 
are taken to be new center values

4. Go to step 1

– until convergence
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Example: The K-Means Clustering Method
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The criterion function

� The square-error criterion

– where E is the sum of the square error for all objects 

in the data set; 

– p is the point in space representing a given object; 

and 

– mi is the mean of cluster Ci (both p and mi are 
multidimensional)
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Weakness of K-means method

� Often terminate at a local optimum, The global optimum
may be found using techniques such as: deterministic 
annealing and genetic algorithms

� Applicable only when mean is defined, then what about 

categorical data?

� Need to specify k, the number of clusters, in advance

� Unable to handle noisy data and outliers

+
+
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The end of
Chapter 4: Algorithms:

The Basic Methods


