Chapter 5:

Credibility: Evaluating what’s been learned
Credibility: Evaluating what’s been learned

- Training and testing
- Predicting performance
- Cross validation
- Other estimates: Leave-one-out & The bootstrap
- Comparing data mining methods
- Predicting probabilities: loss functions
- Costsensitive measures
- Evaluating numeric prediction
- The Minimum Description Length principle
Evaluation: the key to success

- Error on the training data is *not* a good indicator of performance on future data
 - Otherwise 1NN would be the optimum classifier!
- Simple solution that can be used if lots of data is available:
 - Split data into training and test set
- However: data is usually limited
 - More sophisticated techniques need to be used
Issues in evaluation

- Statistical reliability of estimated differences in performance (-> significance tests)
- Choice of performance measure:
 - Number of correct classifications
 - Accuracy of probability estimates
 - Error in numeric predictions
- Costs assigned to different types of errors
 - Many practical applications involve costs
5.1 Training and testing
Training and testing

- Natural performance measure for classification problems: *error rate*
 - *Success*: instance’s class is predicted correctly
 - *Error*: instance’s class is predicted incorrectly
 - Error rate: proportion of errors made over the whole set of instances

- *Resubstitution error*: error rate obtained from training data

- Resubstitution error is optimistic!
Training and testing

- **Test set:** independent instances that have played no part in formation of classifier
 - Assumption: both training data and test data are representative samples of the underlying problem
- Test and training data may differ in nature
 - Example: classifiers built using customer data from two different towns A and B
 - To estimate performance of classifier from town A in completely **new town**, test it on data from B
Note on parameter tuning

- It is important that the test data is not used *in any way* to create the classifier.
- Some learning schemes operate in two stages:
 - Stage 1: build the basic structure
 - Stage 2: optimize parameter settings
- The test data can’t be used for parameter tuning!
- Proper procedure uses *three* sets: *training data*, *validation data*, and *test data*:
 - Training data is used to build the basic structure
 - Validation data is used to optimize parameters or to select a particular method
 - Test data is used to calculate the error rate of the final method
Making the most of the data

- Once evaluation is complete, *all the data* can be used to build the final classifier.

- Generally,
 - The larger the training data the better the classifier.
 - The larger the test data the more accurate the error estimate.

- *Holdout* procedure: method of splitting original data into training and test set.
 - Dilemma: ideally both training set *and* test set should be large!
5.2 Predicting performance
Predicting performance

- Assume the estimated error rate is 25%. How close is this to the true error rate?
 - Depends on the amount of test data
- Prediction is just like tossing a (biased) coin
 “Head” is a “success”, “tail” is an “error”
- In statistics, a succession of independent events like this is called a Bernoulli process
 - Statistical theory provides us with confidence intervals for the true underlying proportion
Confidence intervals

- Suppose \(p \) is success rate, that out of \(N \) trials, \(S \) are successes: thus the observed success rate is \(f = S/N \)
- We can say: \(p \) lies within a certain specified interval with a certain specified confidence
- Example: \(S=750 \) successes in \(N=1000 \) trials
 - Estimated success rate: 75%
 - How close is this to true success rate \(p \)?
 - Answer: with 80% confidence \(p \) in [73.2, 76.7]
- Another example: \(S=75 \) and \(N=100 \)
 - Estimated success rate: 75%
 - With 80% confidence \(p \) in [69.1, 80.1]
Mean and variance

- Mean and variance for a Bernoulli trial: \(p, p (1-p) \)
- Expected success rate \(f=S/N \)
- Mean and variance for \(f \): \(p, p (1-p)/N \)
- For large enough \(N \), \(f \) follows a Normal distribution
- \(c\% \) confidence interval \([-z \leq X \leq z]\) for random variable with 0 mean is given by:
 \[\Pr[-z \leq X \leq z] = c \]
- With a symmetric distribution:
 \[\Pr[-z \leq X \leq z] = 1 - 2 \times \Pr[x \geq z] \]
Confidence limits

- Confidence limits for the normal distribution with 0 mean and a variance of 1:

\[
\Pr[-1.65 \leq X \leq +1.65] = 90\%
\]

- To use this we have to reduce our random variable \(f \) to have 0 mean and unit variance.

<table>
<thead>
<tr>
<th>(\Pr[X \geq z])</th>
<th>(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1%</td>
<td>3.09</td>
</tr>
<tr>
<td>0.5%</td>
<td>2.58</td>
</tr>
<tr>
<td>1%</td>
<td>2.33</td>
</tr>
<tr>
<td>5%</td>
<td>1.65</td>
</tr>
<tr>
<td>10%</td>
<td>1.28</td>
</tr>
<tr>
<td>20%</td>
<td>0.84</td>
</tr>
<tr>
<td>40%</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Transforming f

- Transformed value for f to have zero mean and unit variance

 \[
 \frac{f - p}{\sqrt{p(1-p)/N}}
 \]

 - Subtract the mean and divide by the *standard deviation*

- Resulting equation:

 \[
 \Pr\left[-z < \frac{f - p}{\sqrt{p(1-p)/N}} < z \right] = c
 \]

- Solving for p:

 \[
 p = \left(f + \frac{z^2}{2N} \pm z \sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}} \right) / \left(1 + \frac{z^2}{N} \right)
 \]
Examples

- $f = 75\%, \ N = 1000, \ c = 80\%$ (so that $z = 1.28$):
 Interval for p $[0.732, 0.767]$

- $f = 75\%, \ N = 100, \ c = 80\%$ (so that $z = 1.28$):
 Interval for p $[0.691, 0.801]$

- $f = 75\%, \ N = 10, \ c = 80\%$ (so that $z = 1.28$):
 Interval for p $[0.549, 0.881]$

- Note that normal distribution assumption is only valid for large N (i.e. $N > 100$)
5.3 Cross-validation
Holdout estimation

- What to do if the amount of data is limited?
- The *holdout* method reserves a certain amount for testing and uses the remainder for training
 - Usually: one third for testing, the rest for training
- Problem: the samples might not be representative
 - Example: class might be missing in the test data
- Advanced version uses *stratification*
 - Ensures that each class is represented with approximately equal proportions in both subsets
Repeated holdout method

- Holdout estimate can be made more reliable by repeating the process with different subsamples
 - In each iteration, a certain proportion is randomly selected for training
 - The error rates on the different iterations are averaged to yield an overall error rate
- This is called the *repeated holdout* method
- Still not optimum: the different test sets overlap
 - Can we prevent overlapping?
Cross-validation

- **Cross-validation** avoids overlapping test sets
 - First step: split data into \(k \) subsets of equal size
 - Second step: use each subset in turn for testing, the remainder for training
- Called **\(k \)-fold cross-validation**
- Often the subsets are stratified before the cross-validation is performed
- The error estimates are averaged to yield an overall error estimate
More on cross-validation

- Standard method for evaluation: stratified ten-fold cross-validation
- Why ten?
 - Extensive experiments have shown that this is the best choice to get an accurate estimate
 - There is also some theoretical evidence for this
- Stratification reduces the estimate’s variance
- Even better: repeated stratified cross-validation
 - E.g. ten-fold cross-validation is repeated ten times and results are averaged (reduces the variance)
5.4 Other estimates
Leave-One-Out cross-validation

- Leave-One-Out: a particular form of cross-validation:
 - Set number of folds to number of training instances
 - I.e., for \(n \) training instances, build classifier \(n \) times

- Advantages:
 - Makes best use of the data for training in each case
 - Involves no random subsampling
Leave-One-Out-CV and stratification

- Disadvantage of Leave-One-Out-CV:
 - Very computationally expensive
 - It *guarantees* a non-stratified sample because there is only one instance in the test set!

- Extreme example: random dataset split equally into two classes
 - Best inducer predicts majority class
 - 50% accuracy on fresh data
 - Leave-One-Out-CV estimate is 100% error!
The bootstrap

- CV uses sampling *without replacement*
 - The same instance, once selected, can not be selected again for a particular training/test set

- The *bootstrap* uses sampling *with replacement* to form the training set
 - Sample a dataset of n instances n times *with replacement* to form a new dataset of n instances
 - Use this data as the training set
 - Use the instances from the original dataset that don’t occur in the new training set for testing
The 0.632 bootstrap

The 0.632 bootstrap

- A particular instance has a probability of $1 - \frac{1}{n}$ of not being picked
- Thus its probability of ending up in the test data is:

$$\left(1 - \frac{1}{n}\right)^n \approx e^{-1} = 0.368$$

- Where e is the base of natural logarithms, 2.7183
- This means the training data will contain approximately 63.2% of the instances
Estimating error with the bootstrap

- The error estimate on the test data will be very pessimistic
 - Trained on just ~63% of the instances
- Therefore, combine it with the resubstitution error:
 \[e = 0.632 \times e_{\text{test instances}} + 0.368 \times e_{\text{training instances}} \]
- The resubstitution error gets less weight than the error on the test data
- Repeat process several times with different replacement samples; average the results
More on the bootstrap

- Probably the best way of estimating performance for very small datasets
- However, it has some problems
 - Consider the random dataset from above
 - A perfect memorizer will achieve 0% resubstitution error and ~50% error on test data
 - Bootstrap estimate for this classifier: \(\text{err} = 0.632 \times 50\% + 0.368 \times 0\% = 31.6\% \)
 - True expected error: 50\%
5.5 Comparing data mining methods
Comparing data mining methods

- Frequent question: which of two learning methods performs better?
- Note: this is domain dependent!
- Obvious way: compare 10-fold CV estimates
- Generally sufficient in applications
- How about, when a new learning algorithm is proposed?
 - Need to show that a particular method works really better
Comparing data mining methods (II)

- Want to show that method A is better than method B in a particular domain
 - For a given amount of training data
 - On average, across all possible training sets
- Let's assume we have an infinite amount of data from the domain:
 - Sample infinitely many dataset of specified size
 - Obtain cross-validation estimate on each dataset for each method
 - Check if mean accuracy for method A is better than mean accuracy for method B
Paired t-test

- In practice we have limited data and a limited number of estimates for computing the mean.
- *Student’s t-test* tells whether the means of two samples are significantly different.
- In our case the samples are cross-validation estimates for different datasets from the domain.
- Use a *paired* t-test because the individual samples are paired.
 - The same CV is applied twice.
5.6 Predicting probabilities
Predicting probabilities

- Performance measure so far: success rate
- Also called *0-1 loss function*, the “loss” is:
 - 0 if prediction is correct
 - 1 if prediction is incorrect
- Some classifiers produce class probabilities (such as the Naïve Bayes method)
- Depending on the application, we might want to check the accuracy of the probability estimates
- 0-1 loss is not the right thing to use in those cases

Chapter 5: Credibility: Evaluating what’s been learned
Quadratic loss function

- Suppose that for a single instance there are \(k \) possible classes
- \(p_1 \ldots p_k \) are probability estimates for an instance classes
- \(c \) is the index of the instance’s actual class
- \(a_1 \ldots a_k = 0 \), except for \(a_c \) which is 1
- Quadratic loss is:

\[
\sum_j (p_j - a_j)^2
\]
5.7 Counting the cost
Counting the cost

In practice, different types of classification errors often incur different costs.

Examples:
- Terrorist profiling
 - “Not a terrorist” correct 99.99% of the time
- Loan decisions
- Oil-slick detection
- Fault diagnosis
- Promotional mailing
Counting the cost

- The *confusion matrix*:

<table>
<thead>
<tr>
<th>Actual class</th>
<th>Predicted class</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>yes</td>
<td>true positive</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>false negative</td>
</tr>
<tr>
<td>no</td>
<td>yes</td>
<td>false positive</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>true negative</td>
</tr>
</tbody>
</table>

- The overall success rate is:

\[
\frac{TP + TN}{TP + TN + FP + FN}
\]
Classification with costs

- Default cost matrixes for the two- and three-class cases

<table>
<thead>
<tr>
<th>Predicted class</th>
<th>Actual class</th>
<th>Predicted class</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>no</td>
<td>a</td>
</tr>
<tr>
<td>Actual class</td>
<td>yes</td>
<td>0</td>
</tr>
<tr>
<td>no</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Success rate is replaced by average cost per prediction
 - Cost is given by appropriate entry in the cost matrix
Cost-sensitive classification

- Can take costs into account when making predictions
 - Basic idea: only predict high-cost class when very confident about prediction

- Given: predicted class probabilities
 - Normally we just predict the most likely class
 - Here, we should make the prediction that minimizes the expected cost
 - Expected cost: dot product of vector of class probabilities and appropriate column in cost matrix
 - Choose column (class) that minimizes expected cost
Cost-sensitive learning

- So far we haven't taken costs into account at training time
- Most learning schemes do not perform cost-sensitive learning
 - They generate the same classifier no matter what costs are assigned to the different classes
 - Example: standard decision tree learner
- Simple methods for cost-sensitive learning:
 - Resampling of instances according to costs
 - Weighting of instances according to costs
Lift charts

- In practice, costs are rarely known
- Decisions are usually made by comparing possible scenarios
- Example: promotional mailout to 1,000,000 households
 - Mail to all; 0.1% respond (1000)
 - Data mining tool identifies subset of 100,000 most promising, 0.4% of these respond (400)
 40% of responses for 10% of cost may pay off
 - Identify subset of 400,000 most promising, 0.2% respond (800)
- A *lift chart* allows a visual comparison
Generating a lift chart

- Sort instances according to predicted probability of being positive:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Predicted probability</th>
<th>Actual class</th>
<th>Rank</th>
<th>Predicted probability</th>
<th>Actual class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.95</td>
<td>yes</td>
<td>11</td>
<td>0.77</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>0.93</td>
<td>yes</td>
<td>12</td>
<td>0.76</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>0.93</td>
<td>no</td>
<td>13</td>
<td>0.73</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>0.88</td>
<td>yes</td>
<td>14</td>
<td>0.65</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>0.86</td>
<td>yes</td>
<td>15</td>
<td>0.63</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>0.85</td>
<td>yes</td>
<td>16</td>
<td>0.58</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>0.82</td>
<td>yes</td>
<td>17</td>
<td>0.56</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>0.80</td>
<td>yes</td>
<td>18</td>
<td>0.49</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>0.80</td>
<td>no</td>
<td>19</td>
<td>0.48</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>0.79</td>
<td>yes</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- A small dataset with 150 instances, of which 50 are yes responses—an overall success proportion of 33%.
Chapter 5: Credibility: Evaluating what’s been learned
5.8 Evaluating numeric prediction
Evaluating numeric prediction

- Strategies: independent test set, cross-validation, significance tests, etc.
- Difference: error measures
- Actual target values: $a_1 a_2 \ldots a_n$
- Predicted target values: $p_1 p_2 \ldots p_n$
- Most popular measure: mean-squared error

$$\frac{(p_1 - a_1)^2 + \ldots + (p_n - a_n)^2}{n}$$

- Easy to manipulate mathematically
Other measures

- The *root mean-squared error*:

\[
\sqrt{\frac{(p_1 - a_1)^2 + \ldots + (p_n - a_n)^2}{n}}
\]

- The *mean absolute error*:

\[
\frac{|p_1 - a_1| + \ldots + |p_n - a_n|}{n}
\]

- is less sensitive to outliers than the mean-squared error:
Improvement on the mean

- How much does the scheme improve on simply predicting the average?

- The *relative squared error* is:
 \[
 \frac{(p_1 - a_1)^2 + \ldots + (p_n - a_n)^2}{(a_1 - \overline{a})^2 + \ldots + (a_n - \overline{a})^2}, \text{ where } \overline{a} = \frac{1}{n} \sum_i a_i
 \]

- The *relative absolute error* is:
 \[
 \frac{|p_1 - a_1| + \ldots + |p_n - a_n|}{|a_1 - \overline{a}| + \ldots + |a_n - \overline{a}|}
 \]
Correlation coefficient

- Measures the *statistical correlation* between the predicted values and the actual values

\[
\frac{S_{PA}}{\sqrt{S_p S_A}}, \text{ where } S_{PA} = \frac{\sum_i (p_i - \bar{p})(a_i - \bar{a})}{n - 1},
\]

\[
S_p = \frac{\sum_i (p_i - \bar{p})^2}{n - 1}, \text{ and } S_A = \frac{\sum_i (a_i - \bar{a})^2}{n - 1}
\]

- Scale independent, between –1 and +1
- Good performance leads to large values!
Which measure?

- Best to look at all of them
- Often it doesn’t matter
- Example: Performance measures for four numeric prediction models

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>root mean-squared error</td>
<td>67.8</td>
<td>91.7</td>
<td>63.3</td>
<td>57.4</td>
</tr>
<tr>
<td>mean absolute error</td>
<td>41.3</td>
<td>38.5</td>
<td>33.4</td>
<td>29.2</td>
</tr>
<tr>
<td>root relative squared error</td>
<td>42.2%</td>
<td>57.2%</td>
<td>39.4%</td>
<td>35.8%</td>
</tr>
<tr>
<td>relative absolute error</td>
<td>43.1%</td>
<td>40.1%</td>
<td>34.8%</td>
<td>30.4%</td>
</tr>
<tr>
<td>correlation coefficient</td>
<td>0.88</td>
<td>0.88</td>
<td>0.89</td>
<td>0.91</td>
</tr>
</tbody>
</table>
The end of
Chapter 5: Credibility: Evaluating what’s been learned