

Chapter 5:

Credibility: Evaluating what's been learned

Credibility: Evaluating what's been learned

- Training and testing
- Predicting performance
- Cross validation
- Other estimates: Leave-one-out & The bootstrap
- Comparing data mining methods
- Predicting probabilities: loss functions
- Costsensitive measures
- Evaluating numeric prediction
- The Minimum Description Length principle

Evaluation: the key to success

- Error on the training data is *not* a good indicator of performance on future data
 - Otherwise 1NN would be the optimum classifier!
- Simple solution that can be used if lots of data is available:
 - Split data into training and test set
- However: data is usually limited
 - More sophisticated techniques need to be used

Issues in evaluation

- Statistical reliability of estimated differences in performance (-> significance tests)
- Choice of performance measure:
 - Number of correct classifications
 - Accuracy of probability estimates
 - Error in numeric predictions
- Costs assigned to different types of errors
 - Many practical applications involve costs

5.1 Training and testing

Training and testing

- Natural performance measure for classification problems: *error rate*
 - *Success*: instance's class is predicted correctly
 - *Error*: instance's class is predicted incorrectly
 - Error rate: proportion of errors made over the whole set of instances
- Resubstitution error: error rate obtained from training data
- Resubstitution error is optimistic!

Training and testing

- *Test set*: independent instances that have played no part in formation of classifier
 - Assumption: both training data and test data are representative samples of the underlying problem
- Test and training data may differ in nature
 - Example: classifiers built using customer data from two different towns A and B

 To estimate performance of classifier from town A in completely **new town**, test it on data from B

Note on parameter tuning

- It is important that the test data is not used in any way to create the classifier
- Some learning schemes operate in two stages:
 - Stage 1: build the basic structure
 - Stage 2: optimize parameter settings
- The test data can't be used for parameter tuning!
- Proper procedure uses three sets: training data, validation data, and test data
 - Training data is used to build the basic structure
 - Validation data is used to optimize parameters or to select a particular method
 - Test data is used to calculate the error rate of the final method

Making the most of the data

- Once evaluation is complete, all the data can be used to build the final classifier
- Generally,
 - The larger the training data the better the classifier
 - The larger the test data the more accurate the error estimate
- Holdout procedure: method of splitting original data into training and test set
 - Dilemma: ideally both training set and test set should be large!

5.2 Predicting performance

Predicting performance

- Assume the estimated error rate is 25%. How close is this to the true error rate?
 - Depends on the amount of test data
- Prediction is just like tossing a (biased) coin "Head" is a "success", "tail" is an "error"
- In statistics, a succession of independent events like this is called a *Bernoulli process*
 - Statistical theory provides us with confidence intervals for the true underlying proportion

Confidence intervals

- Suppose p is success rate, that out of N trials, S are successes: thus the observed success rate is f = S/N
- We can say: *p* lies within a certain specified interval with a certain specified confidence
- Example: S=750 successes in N=1000 trials
 - Estimated success rate: 75%
 - How close is this to true success rate p?
 - Answer: with 80% confidence p in [73.2,76.7]
- Another example: *S*=75 and *N*=100
 - Estimated success rate: 75%
 - With 80% confidence *p* in [69.1,80.1]

Mean and variance

- Mean and variance for a Bernoulli trial:
 p, *p* (1–*p*)
- Expected success rate f=S/N
- Mean and variance for f : p, p(1-p)/N
- For large enough N, f follows a Normal distribution
- c% confidence interval $[-z \le X \le z]$ for random variable with 0 mean is given by: $Pr[-z \le X \le z] = c$
- With a symmetric distribution: $Pr[-z \le X \le z]=1-2 \times Pr[x \ge z]$

Confidence limits

 Confidence limits for the normal distribution with 0 mean and a variance of 1:

\wedge	$\Pr[X \ge z]$	Z
	0.1% 0.5% 1% 5% 10%	3.09 2.58 2.33 1.65 1.28
	20% 40%	0.84 0.25
1 0 1 1.65	1070	0.20

- Thus: $\Pr[-1.65 \le X \le +1.65]^{-1} = 90\%$
- To use this we have to reduce our random variable f to have 0 mean and unit variance

Transforming *f*

• Transformed value for f to have zero mean and unit variance f - p

$$\frac{f-p}{\sqrt{p(1-p)/N}}$$

- Subtract the mean and divide by the *standard deviation*
- Resulting equation:

$$\Pr\left[-z < \frac{f-p}{\sqrt{p(1-p)/N}} < z\right] = c$$

• Solving for *p* :

$$p = \left(f + \frac{z^2}{2N} \pm z \sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}}\right) / \left(1 + \frac{z^2}{N}\right)$$

Examples

- f = 75%, N = 1000, c = 80% (so that z = 1.28): Interval for p [0.732, 0.767]
- f = 75%, N = 100, c = 80% (so that z = 1.28): Interval for p [0.691,0.801]
- f = 75%, N = 10, c = 80% (so that z = 1.28): Interval for p [0.549,0.881]
- Note that normal distribution assumption is only valid for large N (i.e. N > 100)

5.3 Cross-validation

Holdout estimation

- What to do if the amount of data is limited?
- The *holdout* method reserves a certain amount for testing and uses the remainder for training
 - Usually: one third for testing, the rest for training
- Problem: the samples might not be representative
 - Example: class might be missing in the test data
- Advanced version uses stratification
 - Ensures that each class is represented with approximately equal proportions in both subsets

Repeated holdout method

- Holdout estimate can be made more reliable by repeating the process with different subsamples
 - In each iteration, a certain proportion is randomly selected for training
 - The error rates on the different iterations are averaged to yield an overall error rate
- This is called the *repeated holdout* method
- Still not optimum: the different test sets overlap
 - Can we prevent overlapping?

Cross-validation

• Cross-validation avoids overlapping test sets

- First step: split data into k subsets of equal size
- Second step: use each subset in turn for testing, the remainder for training
- Called *k-fold cross-validation*
- Often the subsets are stratified before the crossvalidation is performed
- The error estimates are averaged to yield an overall error estimate

More on cross-validation

- Standard method for evaluation: stratified ten-fold cross-validation
- Why ten?
 - Extensive experiments have shown that this is the best choice to get an accurate estimate
 - There is also some theoretical evidence for this
- Stratification reduces the estimate's variance
- Even better: repeated stratified cross-validation
 - E.g. ten-fold cross-validation is repeated ten times and results are averaged (reduces the variance)

5.4 Other estimates

Leave-One-Out cross-validation

- Leave-One-Out: a particular form of crossvalidation:
 - Set number of folds to number of training instances
 - I.e., for *n* training instances, build classifier *n* times
- Advantages:
 - Makes best use of the data for training in each case
 - Involves no random subsampling

Leave-One-Out-CV and stratification

- Disadvantage of Leave-One-Out-CV:
 - Very computationally expensive
 - It guarantees a non-stratified sample because there is only one instance in the test set!
- Extreme example: random dataset split equally into two classes
 - Best inducer predicts majority class
 - 50% accuracy on fresh data
 - Leave-One-Out-CV estimate is 100% error!

The bootstrap

• CV uses sampling without replacement

- The same instance, once selected, can not be selected again for a particular training/test set
- The bootstrap uses sampling with replacement to form the training set
 - Sample a dataset of *n* instances *n* times *with replacement* to form a new dataset of *n* instances
 - Use this data as the training set
 - Use the instances from the original dataset that don't occur in the new training set for testing

The 0.632 bootstrap

- The 0.632 bootstrap
 - A particular instance has a probability of 1–1/n of not being picked
 - Thus its probability of ending up in the test data is:

$$\left(1-\frac{1}{n}\right)^n \approx e^{-1} = 0.368$$

- Where *e* is the base of natural logarithms, 2.7183
- This means the training data will contain approximately 63.2% of the instances

Estimating error with the bootstrap

- The error estimate on the test data will be very pessimistic
 - Trained on just ~63% of the instances
- Therefore, combine it with the resubstitution error:

$$e = 0.632 \times e_{\text{test instances}} + 0.368 \times e_{\text{training instances}}$$

- The resubstitution error gets less weight than the error on the test data
- Repeat process several times with different replacement samples; average the results

More on the bootstrap

- Probably the best way of estimating performance for very small datasets
- However, it has some problems
 - Consider the random dataset from above
 - A perfect memorizer will achieve 0% resubstitution error and ~50% error on test data
 - Bootstrap estimate for this classifier: err=0.632×50%+0.368×0% = 31.6%
 - True expected error: 50%

5.5 Comparing data mining methods

Comparing data mining methods

- Frequent question: which of two learning methods performs better?
- Note: this is domain dependent!
- Obvious way: compare 10-fold CV estimates
- Generally sufficient in applications
- How about, when a new learning algorithm is proposed?
 - Need to show that a particular method works really better

Comparing data mining methods (II)

- Want to show that method A is better than method B in a particular domain
 - For a given amount of training data
 - On average, across all possible training sets
- Let's assume we have an infinite amount of data from the domain:
 - Sample infinitely many dataset of specified size
 - Obtain cross-validation estimate on each dataset for each method
 - Check if mean accuracy for method A is better than mean accuracy for method B

Paired t-test

- In practice we have limited data and a limited number of estimates for computing the mean
- Student's t-test tells whether the means of two samples are significantly different
- In our case the samples are cross-validation estimates for different datasets from the domain
- Use a *paired* t-test because the individual samples are paired
 - The same CV is applied twice

5.6 Predicting probabilities

Predicting probabilities

- Performance measure so far: success rate
- Also called 0-1 loss function, the "loss" is:
 - 0 if prediction is correct
 - 1 if prediction is incorrect
- Some classifiers produces class probabilities (such as the Naïve Bayes method)
- Depending on the application, we might want to check the accuracy of the probability estimates
- 0-1 loss is not the right thing to use in those cases

Quadratic loss function

- Suppose that for a single instance there are k possible classes
- *p*₁ ... *p*_k are probability estimates for an instance classes
- c is the index of the instance's actual class
- $a_1 \dots a_k = 0$, except for a_c which is 1
- *Quadratic loss* is:

$$\sum_{j}(p_{j}-a_{j})^{2}$$

5.7 Counting the cost

Counting the cost

- In practice, different types of classification errors often incur different costs
- Examples:
 - Terrorist profiling
 - "Not a terrorist" correct 99.99% of the time
 - Loan decisions
 - Oil-slick detection
 - Fault diagnosis
 - Promotional mailing

Counting the cost

• The confusion matrix:

	Predicted class			
		yes		no
Actual class	yes	true positive		false negative
	no	false positive		true negative

• The overall success rate is:

TP + TN

TP + TN + FP + FN

Classification with costs

 Default cost matrixes for the two- and three-class cases

		Prec	Predicted class				Predicted class	
		yes	no			а	b	С
Actual class	yes no	0 1	1 0	Actual class	a b	0 1	1 0	1 1
					С	1	1	0

- Success rate is replaced by average cost per prediction
 - Cost is given by appropriate entry in the cost matrix

Cost-sensitive classification

- Can take costs into account when making predictions
 - Basic idea: only predict high-cost class when very confident about prediction
- Given: predicted class probabilities
 - Normally we just predict the most likely class
 - Here, we should make the prediction that minimizes the expected cost
 - Expected cost: dot product of vector of class probabilities and appropriate column in cost matrix
 - Choose column (class) that minimizes expected cost

Cost-sensitive learning

- So far we haven't taken costs into account at training time
- Most learning schemes do not perform costsensitive learning
 - They generate the same classifier no matter what costs are assigned to the different classes
 - Example: standard decision tree learner
- Simple methods for cost-sensitive learning:
 - Resampling of instances according to costs
 - Weighting of instances according to costs

Lift charts

- In practice, costs are rarely known
- Decisions are usually made by comparing possible scenarios
- Example: promotional mailout to 1,000,000 households
 - Mail to all; 0.1% respond (1000)
 - Data mining tool identifies subset of 100,000 most promising, 0.4% of these respond (400)
 40% of responses for 10% of cost may pay off
 - Identify subset of 400,000 most promising, 0.2% respond (800)
- A *lift chart* allows a visual comparison

Generating a lift chart

Sort instances according to predicted probability of being positive:

Rank	Predicted probability	Actual class	Rank	Predicted probability	Actual class
1	0.95	Ves	11	0.77	по
2	0.93	, ves	12	0.76	ves
3	0.93	no	13	0.73	, ves
4	0.88	yes	14	0.65	no
5	0.86	yes	15	0.63	<i>yes</i>
6	0.85	yes	16	0.58	no
7	0.82	yes	17	0.56	<i>yes</i>
8	0.80	yes	18	0.49	no
9	0.80	no	19	0.48	yes
10	0.79	yes			

• A small dataset with 150 instances, of which 50 are *yes* responses—an overall success proportion of 33%.

A hypothetical lift chart

5.8 Evaluating numeric prediction

Evaluating numeric prediction

- Strategies: independent test set, cross-validation, significance tests, etc.
- Difference: error measures
- Actual target values: $a_1 a_2 \dots a_n$
- Predicted target values: $p_1 p_2 \dots p_n$
- Most popular measure: mean-squared error

$$\frac{\left(p_1-a_1\right)^2+\ldots+\left(p_n-a_n\right)^2}{n}$$

Easy to manipulate mathematically

Other measures

• The root mean-squared error :

$$\sqrt{\frac{\left(p_1-a_1\right)^2+\ldots+\left(p_n-a_n\right)^2}{n}}$$

• The mean absolute error:

$$\frac{|p_1-a_1|+\ldots+|p_n-a_n|}{n}$$

is less sensitive to outliers than the mean-squared error:

Improvement on the mean

- How much does the scheme improve on simply predicting the average?
- The *relative squared error* is:

$$\frac{(p_1-a_1)^2+\ldots+(p_n-a_n)^2}{(a_1-\overline{a})^2+\ldots+(a_n-\overline{a})^2}, \text{ where } \overline{a} = \frac{1}{n} \sum_i a_i$$

• The *relative absolute error* is:

$$\frac{|p_1-a_1|+\ldots+|p_n-a_n|}{|a_1-\overline{a}|+\ldots+|a_n-\overline{a}|}$$

Correlation coefficient

 Measures the statistical correlation between the predicted values and the actual values

$$\frac{S_{PA}}{\sqrt{S_P S_A}}, \text{ where } S_{PA} = \frac{\sum_i (p_i - \overline{p})(a_i - \overline{a})}{n - 1},$$
$$S_p = \frac{\sum_i (p_i - \overline{p})^2}{n - 1}, \text{ and } S_A = \frac{\sum_i (a_i - \overline{a})^2}{n - 1}$$

Scale independent, between –1 and +1
Good performance leads to large values!

Which measure?

- Best to look at all of them
- Often it doesn't matter
- Example: Performance measures for four numeric prediction models

	А	В	С	D
root mean-squared error	67.8	91.7	63.3	57.4
mean absolute error	41.3	38.5	33.4	29.2
root relative squared error	42.2%	57.2%	39.4%	35.8%
relative absolute error	43.1%	40.1%	34.8%	30.4%
correlation coefficient	0.88	0.88	0.89	0.91

The end of Chapter 5: Credibility: Evaluating what's been learned