
5. Variables

Java

Summer 2008

Instructor: Dr. Masoud Yaghini

Variables

Outline

� Types of Variables

� Naming

� Declaring Variables

� Primitive Data Types

� Default Values

� Literals

Types of Variables

Variables

Types of Variables

� In the Java programming language, the terms
"field" and "variable" are both used.

� Java actually has four kinds of variables:

– Instance Variables (Non-Static Fields)

– Class Variables (Static Fields)

– Local Variables

– Parameters

Variables

Instance Variables (Non-Static Fields)

� Objects store their individual state in non-

static fields.

� Non-static fields are also known as instance

variables because their values are unique to
each instance of a class (to each object, in
other words).

� Example:

– the currentSpeed of one bicycle is independent from
the currentSpeed of another bicycle.

Variables

Class Variables (Static Fields)

� A given class will only have one copy of each of its
static fields / class variables and these will be shared
among all the objects.

� Each class variable exists even if no objects of the
class have been created.

� Use the word static to declare a static field.

� Example:

– A field defining the number of gears for a particular kind of
bicycle could be marked as static since conceptually the same
number of gears will apply to all instances.

– The code static int numGears = 6; would create such a static
field.

– the keyword final could be added, to indicate that the number
of gears will never change.

Variables

Local Variables

� Local variables are available only within the
method that declares them, never anywhere
else

� The syntax for declaring a local variable is
similar to declaring a field

� For example, int count = 0;

Variables

Parameters

� For the main method is public

– static void main(String[] args)

� The args variable is the parameter to this
method.

� The parameters are always classified as
"variables," not "fields."

Variables

Fields vs. Variables

� If we are talking about "fields in general"
(excluding local variables and parameters), we
may simply say "fields."

� If the discussion applies to "all of the above,"
we may simply say "variables.“

� If the context calls for a distinction, we will use
specific terms (static field, local variable, etc.)
as appropriate.

Variables

Class Members

� A class can have three kinds of members:

– fields: data variables which determine the status of
the class or an object

– methods: executable code of the class built from
statements. It allows us to manipulate/change the
status of an object or access the value of the data
member

– nested classes and nested interfaces

Naming

Variables

Naming

� Variable names are case sensitive.

– which means that uppercase letters are different
from lowercase letters

– The variable X is therefore different from the
variable x

– and a rose is not a Rose is not a ROSE

� A variable's name can be any legal unlimited-
length sequence of Unicode letters and digits

Variables

Naming

� A variable's name can be beginning with a
letter, the dollar sign, "$", or the underscore
character, "_".

� The convention, however, is to always begin
your variable names with a letter

� They cannot start with a number

� White space is not permitted

Variables

Naming

� When choosing a name for your variables, use
full words instead of cryptic abbreviations.

� For example, fields named cadence, speed,
and gear, are much more intuitive than
abbreviated versions, such as s, c, and g.

� The name you choose must not be a keyword
or reserved word.

� See Appendix A, "Java Language Keywords"

Variables

Naming

� If the name you choose consists of only one
word, spell that word in all lowercase letters.

– Example: cadence, speed

� If it consists of more than one word, capitalize
the first letter of each subsequent word.

– Example: gearRatio, currentGear

� If your variable stores a constant value,
capitalizing every letter and separating
subsequent words with the underscore
character

– Example: static final int NUM_GEARS = 6;

Declaring Variables

Variables

Declaring Variables

� Before you can use a variable -> declare it

� After it is declared -> assign values to it

� Variable declarations consist of a type and a
variable name:

� Example: int gear = 1;

– Doing so tells your program that a field named
"gear" exists, holds numerical data, and has an
initial value of "1".

Variables

Declaring Variables

� A variable's data type determines the values it
may contain, plus the operations that may be
performed on it.

� You can string together variable names of the
same type on one line:
– int x, y, z;

� You can also give each variable an initial value
when you declare it:

– int x = 1, y = 20, z = 300;

Variables

Assigning Values to Variables

� Once a variable has been declared, you can
assign a value to that variable by using the
assignment operator =:

size = 14;

tooMuchCaffeine = true;

Primitive Data Types

Variables

Primitive Data Types

� A primitive type is predefined by the language
and is named by a reserved keyword.

� Primitive values do not share state with other
primitive values.

� The eight primitive data types:

– Integer types: byte, short, int, long

– Real types: float, double

– Logical type: boolean

– Character type: char

Variables

Primitive Data Types

� byte

– 8 bits signed integer, -128 to 127

� short

– 16 bits signed integer, -32,768 to 32,767

� int

– 32 bits signed integer, -2,147,483,648 to
2,147,483,647

� long

– 64 bits signed integer, -9,223,372,036,854,775,808
to 9,223,372,036,854,775,807

Variables

Primitive Data Types

� float
– single-precision 32-bit floating point

� double
– double-precision 64-bit floating point

� boolean
– has only two possible values: true and false.

– Use this data type for simple flags that track
true/false conditions.

� char
– single 16-bit Unicode character.

– It has a minimum value of '\u0000' (or 0) and a
maximum value of '\uffff' (or 65,535 inclusive).

Variables

Primitive Data Types

� Note that all the primitive types are in
lowercase

� Which type you choose for your variables
depends on the range of values you expect
that variable to hold

Variables

Character strings

� The Java programming language also provides
special support for character strings via the
java.lang.String class.

� Enclosing your character string within double
quotes will automatically create a new String
object;

– for example, String s = "this is a string";

� The String class is not technically a primitive
data type, but considering the special support
given to it by the language

Default Values

Variables

Default Values of Fields

� Fields that are declared but not initialized will
be set to a reasonable default by the compiler.

� Relying on such default values, however, is
generally considered bad programming style.

Variables

Data Types and Their Default Values

Variables

Default Values of Local Variables

� The compiler never assigns a default value to
an uninitialized local variable.

� If you cannot initialize your local variable where
it is declared, make sure to assign it a value
before you attempt to use it.

� your Java program will not compile if you try to
use an unassigned local variable

Literals

Variables

Literals

� A literal is any number, text, or other
information that directly represents a value.

� As shown below, it's possible to assign a literal
to a variable of a primitive type:

– boolean result = true;

– char capitalC = 'C';

– byte b = 100;

– short s = 10000;

– int i = 100000;

� true, C, 100, 10000, 100000 are literals.

Variables

The Integral Literals

� The integral types (byte, short, int, and long)
can be expressed using decimal, octal, or
hexadecimal number systems.

– Decimal is based on 10 digits, numbered 0 through
9.

– The octal is base 8, consisting of the digits 0
through 7

– The hexadecimal is base 16, whose digits are the
numbers 0 through 9 and the letters A through F.

� For general-purpose programming, the decimal
system is likely to be the only number system
you'll ever use.

Variables

The Integral Literals

� However, if you need octal or hexadecimal, the
following example shows the correct syntax.

� The prefix 0 indicates octal, whereas 0x
indicates hexadecimal.

– int decVal = 26; // The number 26, in decimal

– int octVal = 032; // The number 26, in octal

– int hexVal = 0x1a; // The number 26, in hexadecimal

Variables

Floating Point Literals

� The floating point types (float and double) can
also be expressed using:

– E or e (for scientific notation),

– F or f (32-bit float literal), and

– D or d (64-bit double literal; this is the default and by
convention is omitted).

� Examples:

– double d1 = 123.4;

– double d2 = 1.234e2; // same value as d1,

– float f1 = 123.4f;

Variables

Boolean Literals

� Boolean literals consist of the keywords true
and false

� These keywords can be used anywhere you
need a test or as the only possible values for
boolean variables

Variables

char Literals

� Literals of types char may contain any Unicode (UTF-
16) characters.

� Character literals are expressed by a single character
surrounded by single quotation marks

– `a', `#', `3', and so on

� The Java programming language also supports a few
special escape sequences for char and String literals:

– \b (backspace), \t (tab),

– \n (line feed), \f (form feed),

– \r (carriage return), \" (double quote),

– \' (single quote), and \\ (backslash).

Variables

String Literals

� A combination of characters is a string

� Strings in Java are instances of the class
String

� Strings are not simply arrays of characters as
they are in C or C++

� Because string objects are real objects in Java,
they have methods that enable you to
combine, test, and modify strings very easily

� String literals consist of a series of characters
inside double quotation marks:

– "Hi, I'm a string literal."

Variables

String Literals

� Strings can contain character constants such
as double quote:

– "Nested strings are \"strings inside of\" other strings“

� When you use a string literal in your Java
program, Java automatically creates an
instance of the class String for you with the
value you give it

Variables

null Literal

� There's also a special null literal that can be
used as a value for any reference type.

� null may be assigned to any variable, except
variables of primitive types.

� There's little you can do with a null value
beyond testing for its presence.

� Therefore, null is often used in programs as a
marker to indicate that some object is
unavailable.

References

Variables

References

� S. Zakhour, S. Hommel, J. Royal, I.
Rabinovitch, T. Risser, M. Hoeber, The Java

Tutorial: A Short Course on the Basics, 4th
Edition, Prentice Hall, 2006. (Chapter 3)

The End

