6. Operators

Summer 2008
Instructor: Dr. Masoud Yaghini

Operators

Operators
-«

e Operators are special symbols that perform
specific operations on one, two, or three
operands, and then return a result.

Operators

Outline
-]

e Simple Assignment Operator

e Arithmetic Operators

e Unary Operators

e Equality and Relational Operators
e Logical Operators

e Conditional Operator

e Type Comparison Operator

e Bitwise and Bit Shift Operators

e Operator Precedence

e References

Simple Assignment Operator

Operators

The Simple Assighment Operator
-

e One of the most common operators that you'll
encounter is the simple assignment operator

e You saw this operator in the Bicycle class; it
assigns the value on its right to the operand on
its left:

- Int cadence = 0;
— Int speed = 0;
— intgear =1;

Arithmetic Operators

Operators

The Arithmetic Operators
7

e The Arithmetic Operators:
+ additive operator (also used for String joining)
- Subtraction operator
* multiplication operator
/ division operator
% remainder operator

e The only symbol that might look new to you is
"%", which divides one operand by another and
returns the remainder as its result.

Operators

ArithmeticDemo Program

result

result

result

result

result
result

int rezult = 1;
SYstenm.

nySten.

HYsten.

nySten.

SyStem.

SyStem.

class ArithmeticDemo
public static woid main (3tring[] args){
A7 result is now 1

out.printlniresult) ;

=14+ 2; 75 result iz now 3

ont.printlniresult) ;
A7 result
opt.printlniresult) ;
A4 result
ont.printlniresult) ;
= result f £; /7 result
ont.printlniresult) ;
= result + &8; 7 result
= result % V; 7 result
ont.printlniresult) ;

= result - 1;

= result * Z:

i3

i3

is

i3
i3

nowr 2

now 4

now X

nrowr 14
now 3

Operators

Compound Assignhments
|
e You can also combine the arithmetic operators
with the simple assignment operator to create

compound assignments.

e For example, x+=1; and x=x+1; both increment
the value of x by 1.

Operators

+ operator for String concatenation
— —

e The + operator can also be used for
concatenating (joining) two strings together, as
shown in the following ConcatDemo program:

class ConcatDemo [
public =static void main(3tring[] args){
string firstitring = "This is";
mtring secondstring = " a concatenated =trimg.":;
Atring third3tring = firstitring+secondstring:
syaten. ont.printlnithird3tring) ;

Unary Operators

Operators

The Unary Operators

e The unary operators:

+ Unary plus operator; indicates positive value
- Unary minus operator; negates an expression
++ Increment operator; increments a value by 1
-- Decrement operator; decrements a value by 1

| Logical complement operator; inverts the value of
a boolean

e The unary operators require only one operand

Operators

UnaryDemo Program
-

class TharyDemo |

public static void main(3tring[] args){
int result = +1; /9 result 13 pow 1
aysten. opt.printlniresult) ;
result--; 7 result is now
aysten. opt.printlniresult) ;
resultH: S result is now 1
avsten. onpt.printlniresult) ;
result = -result; 7 resyplt iz now -1
aysten. opt.printlniresult) ;
bhoolean succeszsz = false;
avsten. opt.printlnisuccess); /. false
aysten. onk.println(!success); A7 true

Operators

The Unary Operators
— —

e The increment/decrement operators can be applied
before (prefix) or after (postfix) the operand.

e [he code result++:; and ++result; will both end In result
being incremented by one.

e The only difference is that the prefix version (++result)
evaluates to the incremented value, whereas the
postfix version (result++) evaluates to the original
value.

e |f you are just performing a simple
Increment/decrement, it doesn't really matter which
version you choose. But if you use this operator in part
of a larger expression, the one that you choose may
make a significant difference.

Operators

PrePostDemo Program
o —————/—////]

class PrePostDemo !
public static wold main(3tring[] args){

int 1 = 3;
1++;
nysten. opt.printlnl(i) . 7 4T
++1;
ayaten. opt.printlnl(i): 7 TET
aystem. onpt.println(+1i): A e
aysten. opt.println(i+): A5 TET
aysten. opt.printin(i); - 7T

Relational Operators

Operators

The Relational Operators
o

e The Relational Operators:
== equal to
= not equal to
> greater than
>= greater than or equal to
< lessthan
<= less than or equal to

e Keep in mind that you must use "==", not "=",
when testing if two primitive values are equal.

Operators

ComparisonDemo Program
o/

class Cowmparisonlemo |

public static void wain(String[] args) |

int wvalusel = 1;
int wvaluei = Z;
if [(wvalusel == -ralusi)

Systew.out.println("valuel = valued");
if [(valuel = waluesi)

Systew.out.println("valuel I= walue2");
if [valusl > walued)

Systew.ont.println("valuel > valued");
if [valusl < walued)

Systew.ont.println("valuel < valueld"):
if [(valuel = waluei)

System.out.printlnl"valuel <= wvaluel");

Operators

ComparisonDemo Program
o/

e ComparisonDemo program output:
valuel !=value2

valuel < value2
value1 <= value?2

Logical Operators

Operators

The Logical Operators
— —

e Logical Operators:
&& Conditional-AND
| Conditional-OR

Operators

ConditionalDemo1 Program
o/

class ConditionalDemol |

public static void mwain(3tring[] args) |

int wvaluel = 1;
int wvalued = Z;
if [[walusel == 1) £& [wvaluei == Z))

System.ont.println("valuel is 1 AHD value? is 2");
if ([[valuel == 1) || [waluei == 1)1
System.ont.println("valuel is 1 OR value?2 is 1");

Conditional Operator

Operators

Conditional Operator
-

e ?: which can be thought of as shorthand for an
If-then-else statement.

e This operator is known as the ternary operator
because it uses three operands.

e Use the ?: operator instead of an if-then-else
statement if it makes your code more readable;

Operators

Conditional Operator
< /0]
e In the following example, this operator should

be read as:

- "If someCondition is True, assign the value of value1 to result.
- Otherwise, assign the value of value2 to result."

class ConditionalDemod |
public static void wain(3tring[] args) |
int wvaluel = 1;
int wvalued = 2;
int result;
boolean someCondition = txrue;
result = someCondition ? waluel : walue:;

System.out.println(result) ;

Type Comparison Operator

Operators

The Type Comparison Operator instanceof
|

e The instanceof operator compares an object to
a specified type.

e You can use it to test if an object is an instance
of a class, an instance of a subclass, or an
iInstance of a class that implements a particular
Interface.

e The InstanceofDemo program defines:
— a parent class (named Parent),
- a simple interface (named Mylnterface), and

— a child class (named Child) that inherits from the
parent and implements the interface.

Operators

InstanceofDemo Program
o —————/—////]

class InstanceofDemo |
public static void main(3tring args[]) |
Parent objl = new FParent();
Parent objZ = new Childl();
System.ont.println("objl instanceof Parent: " +

(objl instanceof Parent));

System.ont.println("objl instanceof Child: " +
(obij1 instanceof Child));
System.ont.println("objl instanceof MyInterface: " +

(ob31l instanceof MyInterface));
System.ont.println("obj2 instanceof Parent: " +

(objZ instanceof Parent));

System.ont.println("obj2 instanceof Child: " +
(objZ instanceof Child));
System.ont.println("obj2 instanceof MyIntexrface: " +

(objZ instanceof MyInterface));

class Parent { }
class Child extends Parent implements MyInterface { }

interface MyInterface { }

Operators

InstanceofDemo Program
o —————/—////]

e QOutput:

obj1 instanceof Parent: true

obj1 instanceof Child: false

obj1 instanceof Mylnterface: false
obj2 instanceof Parent: true

obj2 instanceof Child: true

obj2 instanceof Mylnterface: true

Bitwise and Bit Shift Operators

Operators

Bitwise and Bit Shift Operators
7

e Bitwise and Bit Shift Operators:
~ unary bitwise complement
<< signed left shift
>> signed right shift
>>> unsigned right shift
& Dbitwise AND
A bitwise exclusive OR (XOR)
| bitwise inclusive OR (OR)

Operator Precedence

Operators

Operator Precedence
S —

e Java has an established precedence hierarchy
to determine the order in which operators are
evaluated.

e Operators with higher precedence are
evaluated before operators with relatively lower
precedence.

Operators

Operator Precedence

assignment

Operators Precedence
postfix eXpr++ expr—-
unary ++2Xpr ——2Xpr +eXpr —eXpr ~
multiplicative A
additive + -
shift R
relational < » <= >= instanceotf
equality == =
bitwise AND &
bitwise exclusive OR |~
bitwise inclusive OR | |
logical AND &&
logical OR I
ternary ?
= 4= —= *= /= %= &= "= Bh= 3=

Operators

Operator Precedence
S —

e The closer to the top of the table an operator
appears, the higher its precedence.

e Operators on the same line have equal
precedence.

e If two operations have the same precedence,
the one on the left in the actual expression is
handled before the one on the right.

Operators

Operator Precedence
S —

e Given differing orders of precedence.
— result=14 + 8/ 2; // Divide first
— / higher precedence than + and result is 18.

e Precedence can be forced using parentheses.
—- result=(14 + 8) / 2; // Add first
~ + is forced first by parentheses and result is 11.

e Given the same order of precedence.
— result=12/2* 3; // Divide first
— /isfirst (L to R), then * and result is 18.

e Adding a unary operator -.
— result=12/-(-3 + 1) * 3; // Negation first
— -isfirst (Rto L), then/ (L to R), then * and result is 18.

Operators

Operator Precedence
S —

e Given increment/decrement operators.
Assume int a = 5;.

—- result =a + (--a) + a;
e ProceedLto Ra=>5,then5 + (--a) + a.
e Nowdoa=a-1=4—>a,then5+4+a—>9 +a.
e Finally,a=4and 9 + 4 — resultis 13.

- result =a + (a--) + a;
e ProceedLto Ra=>5,then5 + (a--) + a.

e Nowdo5+5+a=10+4a,thendoa=a-1=4 — a.
e Finally 10 + a=10 + 4 — result is 14.

References

Operators

References
a]

e S. Zakhour, S. Hommel, J. Royal, I.
Rabinovitch, T. Risser, M. Hoeber, The Java

Tutorial: A Short Course on the Basics, 4th
Edition, Prentice Hall, 2006. (Chapter 3)

