
6. Operators

Java

Summer 2008

Instructor: Dr. Masoud Yaghini

Operators

Operators

� Operators are special symbols that perform

specific operations on one, two, or three

operands, and then return a result.

Operators

Outline

� Simple Assignment Operator

� Arithmetic Operators

� Unary Operators

� Equality and Relational Operators

Logical Operators� Logical Operators

� Conditional Operator

� Type Comparison Operator

� Bitwise and Bit Shift Operators

� Operator Precedence

� References

Simple Assignment Operator

Operators

The Simple Assignment Operator

� One of the most common operators that you'll

encounter is the simple assignment operator

"=".

� You saw this operator in the Bicycle class; it

assigns the value on its right to the operand on assigns the value on its right to the operand on

its left:

– int cadence = 0;

– int speed = 0;

– int gear = 1;

Arithmetic Operators

Operators

The Arithmetic Operators

� The Arithmetic Operators:

+ additive operator (also used for String joining)

- subtraction operator

* multiplication operator

/ division operator/ division operator

% remainder operator

� The only symbol that might look new to you is

"%", which divides one operand by another and

returns the remainder as its result.

Operators

ArithmeticDemo Program

Operators

Compound Assignments

� You can also combine the arithmetic operators

with the simple assignment operator to create

compound assignments.

� For example, x+=1; and x=x+1; both increment

the value of x by 1.the value of x by 1.

Operators

+ operator for String concatenation

� The + operator can also be used for

concatenating (joining) two strings together, as

shown in the following ConcatDemo program:

Unary Operators

Operators

The Unary Operators

� The unary operators:

+ Unary plus operator; indicates positive value

- Unary minus operator; negates an expression

++ Increment operator; increments a value by 1

-- Decrement operator; decrements a value by 1-- Decrement operator; decrements a value by 1

! Logical complement operator; inverts the value of

a boolean

� The unary operators require only one operand

Operators

UnaryDemo Program

Operators

The Unary Operators

� The increment/decrement operators can be applied

before (prefix) or after (postfix) the operand.

� The code result++; and ++result; will both end in result

being incremented by one.

� The only difference is that the prefix version (++result)

evaluates to the incremented value, whereas the evaluates to the incremented value, whereas the

postfix version (result++) evaluates to the original

value.

� If you are just performing a simple

increment/decrement, it doesn't really matter which

version you choose. But if you use this operator in part

of a larger expression, the one that you choose may

make a significant difference.

Operators

PrePostDemo Program

Relational Operators

Operators

The Relational Operators

� The Relational Operators:

== equal to

!= not equal to

> greater than

>= greater than or equal to>= greater than or equal to

< less than

<= less than or equal to

� Keep in mind that you must use "==", not "=",

when testing if two primitive values are equal.

Operators

ComparisonDemo Program

Operators

ComparisonDemo Program

� ComparisonDemo program output:

value1 != value2

value1 < value2

value1 <= value2

Logical Operators

Operators

The Logical Operators

� Logical Operators:

&& Conditional-AND

|| Conditional-OR

Operators

ConditionalDemo1 Program

Conditional Operator

Operators

Conditional Operator

� ?: which can be thought of as shorthand for an

if-then-else statement.

� This operator is known as the ternary operator

because it uses three operands.

� Use the ?: operator instead of an if-then-else � Use the ?: operator instead of an if-then-else

statement if it makes your code more readable;

Operators

Conditional Operator

� In the following example, this operator should

be read as:
– "If someCondition is True, assign the value of value1 to result.

– Otherwise, assign the value of value2 to result."

Type Comparison Operator

Operators

The Type Comparison Operator instanceof

� The instanceof operator compares an object to

a specified type.

� You can use it to test if an object is an instance

of a class, an instance of a subclass, or an

instance of a class that implements a particular instance of a class that implements a particular

interface.

� The InstanceofDemo program defines:

– a parent class (named Parent),

– a simple interface (named MyInterface), and

– a child class (named Child) that inherits from the

parent and implements the interface.

Operators

InstanceofDemo Program

Operators

InstanceofDemo Program

� Output:

obj1 instanceof Parent: true

obj1 instanceof Child: false

obj1 instanceof MyInterface: false

obj2 instanceof Parent: true

obj2 instanceof Child: true

obj2 instanceof MyInterface: true

Bitwise and Bit Shift Operators

Operators

Bitwise and Bit Shift Operators

� Bitwise and Bit Shift Operators:

~ unary bitwise complement

<< signed left shift

>> signed right shift

>>> unsigned right shift

& bitwise AND

^ bitwise exclusive OR (XOR)

| bitwise inclusive OR (OR)

Operator Precedence

Operators

Operator Precedence

� Java has an established precedence hierarchy

to determine the order in which operators are

evaluated.

� Operators with higher precedence are

evaluated before operators with relatively lower evaluated before operators with relatively lower

precedence.

Operators

Operator Precedence

Operators

Operator Precedence

� The closer to the top of the table an operator

appears, the higher its precedence.

� Operators on the same line have equal

precedence.

� If two operations have the same precedence, � If two operations have the same precedence,

the one on the left in the actual expression is

handled before the one on the right.

Operators

Operator Precedence

� Given differing orders of precedence.

– result = 14 + 8 / 2; // Divide first

– / higher precedence than + and result is 18.

� Precedence can be forced using parentheses.

– result = (14 + 8) / 2; // Add first

+ is forced first by parentheses and result is 11.– + is forced first by parentheses and result is 11.

� Given the same order of precedence.

– result = 12 / 2 * 3; // Divide first

– / is first (L to R), then * and result is 18.

� Adding a unary operator -.

– result = 12 / -(-3 + 1) * 3; // Negation first

– - is first (R to L), then / (L to R), then * and result is 18.

Operators

Operator Precedence

� Given increment/decrement operators.

Assume int a = 5;.

– result = a + (--a) + a;

� Proceed L to R a = 5, then 5 + (--a) + a.

� Now do a = a - 1= 4 → a, then 5 + 4 + a → 9 + a.Now do a = a - 1= 4 → a, then 5 + 4 + a → 9 + a.

� Finally, a = 4 and 9 + 4 → result is 13.

– result = a + (a--) + a;

� Proceed L to R a = 5, then 5 + (a--) + a.

� Now do 5 + 5 + a = 10 + a, then do a = a - 1 = 4 → a.

� Finally 10 + a = 10 + 4 → result is 14.

References

Operators

References

� S. Zakhour, S. Hommel, J. Royal, I.

Rabinovitch, T. Risser, M. Hoeber, The Java

Tutorial: A Short Course on the Basics, 4th

Edition, Prentice Hall, 2006. (Chapter 3)

The End

