09. Looping Statements

Summer 2008
Instructor: Dr. Masoud Yaghini

Looping Statements

Outline
-]

ne while Statement

ne do-while Statement
ne for Statement
References

The while Statement

Looping Statements

The while Statement
-]

e The while statement continually executes a
block of statements while a particular condition
Is True.

e The while statement has this general form:

while (expression) {
statement (s)

}

e The while statement evaluates expression,
which must return a boolean value.

e If the expression evaluates to true, the while
statement executes the statement(s) in the
while block.

Looping Statements

The while Statement
-]

e Using the while statement to print the values
from 1 through 10:

class WhileDemo |

public static woid main(String[] args) |
int count = 1;
while (count < 11) |
Svestem.out.println{"Count is: ™ 4+ count);

count++;

Looping Statements

The while Statement
-]

e You can implement an infinite loop using the
while statement as follows:
while (true) {
// your code goes here

The do-while Statement

Looping Statements

The do-while Statements
-]

e [he do-while statement can be expressed as
follows:

do {
statement (s)

} while (expression);

e The difference between do-while and while is
that do-while evaluates its expression at the
bottom of the loop instead of the top.

e [herefore, the statements within the do block
are always executed at least once.

Looping Statements

The do-while Statements
-]

class DoWhileDemo |

public static void main(String[] args) |
int count = 1;
do |
Svestem. oud. println("Count is: ™ + count);
count++;

' while (count < 11);

The for Statement

Looping Statements

The for Statement
-]

e The for statement provides a compact way to
iterate over a range of values.

e Programmers often refer to it as the "for loop

e The general form of the for statement can be
expressed as follows:

for (initialization; termination; increment) {
statement(s)

Looping Statements

The for Statement
-]

e When using this version of the for statement:

— The /nitialization expression initializes the loop; it's
executed once, as the loop begins.

- When the fermination expression evaluates to false,
the loop terminates.

— The /increment expression is invoked after each
iteration through the loop; it is perfectly acceptable
for this expression to increment or decrement a
value.

Looping Statements

The for Statement
-]

e The following program uses the general form of
the for statement to print the numbers 1
through 10:

class ForDemo |
public static woid maini(3tringl[] args)/{
for (int 1=1; 1<11; 144 {

Svstem.out.println(™Count is: ™ + 1);

Looping Statements

Initialization
<
e Notice how the code declares a variable within
the initialization expression.

e The scope of this variable extends from its
declaration to the end of the block governed by
the for statement.

e |f the variable that controls a for statement is
not needed outside of the loop, it's best to
declare the variable in the initialization
expression.

e The names |, |, and k are often used to control
for loops

Looping Statements

The for Statement
-]

e The three expressions of the for loop are
optional; an infinite loop can be created as
follows:

for(; ;) { //infinite loop
// your code goes here

}

References

Looping Statements

References
a]

e S. Zakhour, S. Hommel, J. Royal, I.
Rabinovitch, T. Risser, M. Hoeber, The Java

Tutorial: A Short Course on the Basics, 4th
Edition, Prentice Hall, 2006. (Chapter 3)

