10. Branching Statements

Summer 2008
Instructor: Dr. Masoud Yaghini



Branching Statements

Outline
-]

ne break Statement
ne continue Statement
ne return Statement
References




The break Statement



Branching Statements

The break Statement
-]

e [he break statement has two forms:
- labeled
— unlabeled

e You saw the unlabeled form in the previous
discussion of the switch statement.

e You can also use an unlabeled break to
terminate a for, while, or do-while loop



Branching Statements

The break Statement
-]

class BreakDemo |

public static wvoid maini(String[] args) |
int[] arrayofInts = {32, 87, 3, 589, 12, 107&,
2000, 8, azZZ, 1271%;
int zearchfor = 12;
int 1i;

boolean foundIt = false;

for (i = 0; i < arrayofIntsz.length; i++) |

if (arrayofInts[i] == zearchfor) |
foundIt = true;
break:;

if (foundIt) |
Svstem.out.println ("Found " + searchfor +
" at index "™ + 17 ;
L else |

Syvstem.out.println (searchfor + ™ not in the array™);



Branching Statements
The break Statement
. 000000000000

e This program searches for the number 12 in an
array.

e The break statement terminates the for loop
when that value is found.

e Control flow then transfers to the print
statement at the end of the program.

e This program's output is:
Found 12 at index 4



Branching Statements

The labeled break Statement
-]

e An unlabeled break statement terminates the
Innermost switch, for, while, or do-while
statement,

e But a labeled break terminates an outer
statement.



Branching Statements

The labeled break Statement
-]

class BreakWithLahelDemo |
public static void wain(3tring[] args) |

int[][] arraylfInts = { {32, 87, 3, 589},
{12, 107e, Z000, 81,
fe22, 127, 77, 955}
i

int searchfor = 1Z;
int i;
int j = 0;

bhoolean foundIt = false;

search:
for (i = 0; i < array0fInts.length; i++) |
for (7 = 0; j <« array0fInts[i].length; j++) |
if (arraylfInts[i][j] == searchfor) |
foundIt = true;

break search;



Branching Statements

The labeled break Statement
-]

if [(foundIt) |
System.out.println("Found " +
searchfor + " at " + i + ", " + q1;
I else

System.out.println(searchfor + " not in the array");

;

;

e [he break statement terminates the labeled
statement

e This is the output of the program:
Found 12 at 1,0



The continue Statement



Branching Statements

The continue Statement
]

e [he continue statement skips the current
iteration of a for, while, or do-while loop.
e The continue statement has two forms:
- |labeled
- unlabeled

e The unlabeled form skips to the end of the
iInnermost loop's body and evaluates the
boolean expression that controls the loop.



Branching Statements

The continue Statement
]

class Continuelemwmo |

public static void main(3tring[] args) |

String searchMe = "peter piper picked a peck of " +
"pickled peppers";

int max = searchMe.lengthl);

int numPs = 0;

for (int i = 0; i < max; it++) |
Afinterestad only in p's
if [searchMe.charAt(i) !'= 'p'}

continue;

Afprocess p's
numPs++;
1
System.out.println("Found " + numPs +

" p's in the string.");



Branching Statements

The continue Statement
]

e ContinueDemo steps through a String,
counting the occurrences of the letter "p".

e If the current character is not a p, the continue
statement skips the rest of the loop and
proceeds to the next character.

e Ifitis ap, the program increments the letter
count.

e Here is the output of this program:
Found 9 p's in the string.



Branching Statements

The labeled continue statement
-_C ]

e A labeled continue statement skips the current
iteration of an outer loop marked with the given
label.



Branching Statements

The labeled continue statement
-_C ]

class ContinueWithLabellemo |
public static void mwain(String[] args) |

String searchMe = "Look for a substring in me";
String substring = "sub";
hoolean foundIt = false;

int mwax = searchbe.length() - substring.length):
test:
for (int i = 0; i <= max; it+) |

int n = substring.lengthi);

int j = i;

int k = 0;
while [(n—— != 00 ¢
if [searchMe.charaAt(j++] !'= substring.chardt(k++)) |

continue test;

}

foundIt = true;
bhreak test;
}
Svstemw.ont.println (foundIt ? "Found it
"Didn't find it");



Branching Statements

The labeled continue statement
-_C ]

e ContinueWithLabelDemo uses nested loops to
search for a substring within another string.

e Two nested loops are required: one to iterate
over the substring and one to iterate over the
string being searched.

e The program uses the labeled form of continue
to skip an iteration in the outer loop.

e Here is the output from this program:
Found it



The return Statement



Branching Statements

The return Statement
-_C ]

e The last of the branching statements is the
return statement.

e [he return statement exits from the current
method, and control flow returns to where the
method was invoked.

e [he return statement has two forms:
— one that returns a value
— one that doesn't returns a value

e [o return a value, simply put the value (or an
expression that calculates the value) after the
return keyword.



Branching Statements

The return Statement
-_C ]

e Example:
return ++count;

e The data type of the returned value must
match the type of the method's declared return
value.

e \When a method is declared void, use the form
of return that doesn't return a value.

return;

e The Calling an Object's Methods will be
discussed later.



References



Branching Statements

References
a ]

e S. Zakhour, S. Hommel, J. Royal, I.
Rabinovitch, T. Risser, M. Hoeber, The Java

Tutorial: A Short Course on the Basics, 4th
Edition, Prentice Hall, 2006. (Chapter 3)







