
11. Methods

Java

Summer 2008

Instructor: Dr. Masoud Yaghini



Objects

Outline

� Creating a Method

� Calling a Method

� Passing Parameters

� Overloading Methods� Overloading Methods

� The Scope of Local Variables

� Method Abstraction

� References



Creating a Method



Objects

Creating a Method

� A method is a collection of statements that are 

grouped together to perform an operation.

� Methods Called functions or procedures in 

other languagesother languages

� In general, a method has the following syntax:
modifier returnValueType methodName(list of parameters) { 

// Method body; 

} 



Objects

Creating a Method

� A method created to find which of two integers 

is bigger.



Objects

The Components of a Method

� Method declarations have six components, in order:

– Modifiers

– The return type

– The method name

– The parameters

– An exception list– An exception list

– The method body



Objects

The Modifiers

� The modifier, which is optional, tells the 

compiler how to call the method.



Objects

The Return Type

� A method may return a value. 

� The returnValueType is the data type of the 

value the method returns. 

� If the method does not return a value, the 

returnValueType is the keyword void. returnValueType is the keyword void. 

� For example, the returnValueType in the main

method is void.



Objects

The Return Type

� The method that returns a value is called a 

nonvoid method, and the method that does 

not return a value is called a void method.

� In other languages, a method with a nonvoid � In other languages, a method with a nonvoid 

return value type is called a function, and a 

method with a void return value type is called a 

procedure.



Objects

The Method Name

� A method name can be any legal identifier

� By convention, the first (or only) word in a 

method name should be a verb in lowercase.

� Or a multi-word name that begins with a verb in 

lowercase, followed by adjectives, nouns, etc. lowercase, followed by adjectives, nouns, etc. 

� In multiword names, the first letter of each of 

the second and following words should be 

capitalized. 



Objects

The Method Name

� Here are some examples:

run 

runFast 

getBackground 

getFinalData getFinalData 

compareTo 

setX 

isEmpty 



Objects

The Parameters

� The variables defined in the method header 

are known as formal parameters.

� When a method is invoked, you pass a value to 

the parameter. This value is referred to as the parameter. This value is referred to as 

actual parameter or argument.



Objects

The Parameters

� You need to declare a separate data type for 

each parameter. 

� For instance, int num1, num2 should be 

replaced by int num1, int num2.replaced by int num1, int num2.



Objects

Method signature

� Two of the components of a method 

declaration comprise the method signature:

– the method's name

– the parameter list

� An example of a method declaration: 
public double calculateAnswer(double wingSpan, int 

numberOfEngines, double length, double grossTons) { 

// do the calculation here 

}

� The signature of the method declared above is:
calculateAnswer(double, int, double, double) 



Objects

Method Body

� The method body contains a collection of 

statements that define what the method does. 

� The method terminates when a return 

statement is executed.statement is executed.

� The keyword return is required for a nonvoid 

method to return a result. 



Calling a Method



Objects

Calling a Method

� To use a method, you have to call or invoke it. 

� There are two ways to call a method.

� If the method returns a value, a call to the 

method is usually treated as a value. For 

example:example:

int larger = max(3, 4);

System.out.println(max(3, 4));

� If the method returns void, a call to the method 

must be a statement. For example:

System.out.println("Welcome to Java!");



Objects

Calling a Method



Objects

Calling a Method

� When the max method is invoked, the flow 

of control transfers to the max method. 

Once the max method is finished, it returns 

the control back to the caller.



Objects

Caution

� A return statement is required for a nonvoid 

method. 

� The method shown left below in (a) is logically 

correct, but it has a compilation error:



Objects

Reuse Methods from Other Classes

� One of the benefits of methods is for reuse. 

� The max method can be invoked from any 

class besides TestMax. 

� You can invoke the max method from other 

classes using ClassName.methodName (i.e., classes using ClassName.methodName (i.e., 

TestMax.max).



Objects

Call Stacks

� Each time a method is invoked, the system 

stores parameters and variables in an area of 

memory, known as a stack, which stores 

elements in last-in first-out fashion. 

� When a method calls another method, the � When a method calls another method, the 

caller's stack space is kept intact, and new 

space is created to handle the new method 

call. 

� When a method finishes its work and returns to 

its caller, its associated space is released.



Objects

Call Stacks



Objects

A void Method Example



Passing Parameters



Objects

Passing Parameters

� The arguments must match the parameters in 

order, number, and compatible type, as defined 

in the method signature.

� When you invoke a method with a parameter, 

the value of the argument is passed to the the value of the argument is passed to the 

parameter. 

� This is referred to as pass-by-value. 



Objects

Passing Parameters

� If the argument is a variable rather than a literal 

value, the value of the variable is passed to the 

parameter. 

� The variable is not affected, regardless of the 

changes made to the parameter inside the changes made to the parameter inside the 

method.



Objects

Passing Parameters



Objects

Passing Parameters



Objects

Passing Parameters



Objects

Passing Parameters

� Another twist is to change the parameter name 

n1 in swap to num1. 

� What effect does this have? 

� No change occurs because it makes no 

difference whether the parameter and the difference whether the parameter and the 

argument have the same name.

� For simplicity, Java programmers often say 

passing an argument x to a parameter y, which 

actually means passing the value of x to y.



Overloading Methods



Objects

Overloading Methods

� Method overloading is referred when two 

methods have the same name but different 

parameter lists within one class. 

� Java can distinguish between methods with 

different method signatures. different method signatures. 

� The Java compiler determines which method is 

used based on the method signature.



Objects

Overloading Methods

� The max method that was used earlier works 

only with the int data type. 

� But what if you need to find which of two 

floating-point numbers has the maximum 

value? value? 

� The solution is to create another method with 

the same name but different parameters.
public static double max(double num1, double num2)  { 

if (num1 > num2) 

return num1; 

else 

return num2; 

}



Objects

Overloading Methods



Objects

Overloading Methods



Objects

Overloading Methods

� Can you invoke the max method with an int

value and a double value, such as max(2, 

2.5)? 

� Yes, the max method for finding the maximum 

of two double values is invoked. of two double values is invoked. 

� The argument value 2 is automatically 

converted into a double value and passed to 

this method.



Objects

Ambiguous invocation



Objects

Ambiguous invocation

� Sometimes there are two or more possible 

matches for an invocation of a method, but the 

compiler cannot determine the most specific 

match. 

� This is referred to as ambiguous invocation. � This is referred to as ambiguous invocation. 

� Ambiguous invocation causes a compilation 

error. 



The Scope of Local Variables



Objects

The Scope of Local Variables

� The scope of a variable is the part of the 

program where the variable can be referenced.

� variable defined inside a method is referred to 

as a local variable.

� The scope of a local variable starts from its � The scope of a local variable starts from its 

declaration and continues to the end of the 

block that contains the variable.

� A parameter is actually a local variable. The 

scope of a method parameter covers the entire 

method.



Objects

The Scope of Local Variables

� A variable declared in the initial action part of a for loop 

header has its scope in the entire loop. 

� But a variable declared inside a for loop body has its 

scope limited in the loop body from its declaration to 

the end of the block that contains the variable



Objects

The Scope of Local Variables

� You can declare a local variable with the same 

name multiple times in different non-nesting 

blocks in a method, but you cannot declare a 

local variable twice in nested blocks



Objects

The Scope of Variables

� Do not declare a variable inside a block and 

then attempt to use it outside the block. Here is 

an example of a common mistake:

for (int i = 0; i < 10; i++) {

} } 

System.out.println(i); 

� The last statement would cause a syntax error 

because variable i is not defined outside of the 

for loop.



Method Abstraction



Objects

Method Abstraction

� Method abstraction is achieved by separating 

the use of a method from its implementation. 

� The details of the implementation are 

encapsulated in the method and hidden from 

the client who invokes the method. the client who invokes the method. 

� This is known as information hiding or 

encapsulation. 

� If you decide to change the implementation, 

the client program will not be affected, provided 

that you do not change the method signature. 



Objects

Method Abstraction

� You can think of the method body as a black 

box that contains the detailed implementation 

for the method.



Objects

Method Abstraction

� You have already used the System.out.println 

method to print.

� You know how to write the code to invoke this 

method in your program, but as a user of this 

method, you are not required to know how it is method, you are not required to know how it is 

implemented.



Objects

Method Abstraction

� The concept of method abstraction can be 

applied to the process of developing programs. 

� When writing a large program, you can use the 

"divide and conquer" strategy, also known as 

stepwise refinement, to decompose it into stepwise refinement, to decompose it into 

subproblems. 

� The subproblems can be further decomposed 

into smaller, more manageable problems.



References



Objects

References

� Y. Daniel Liang, Introduction to Java 

Programming, Sixth Edition, 

Pearson Education, 2007. (Chapter 5)

� S. Zakhour and et el., The Java Tutorial: A 

Short Course on the Basics, 4th Edition, Short Course on the Basics, 4th Edition, 

Prentice Hall, 2006. (Chapter 4)



The End 


