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Creating a Method

� A method is a collection of statements that are 

grouped together to perform an operation.

� Methods Called functions or procedures in 

other languagesother languages

� In general, a method has the following syntax:
modifier returnValueType methodName(list of parameters) { 

// Method body; 

} 
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Creating a Method

� A method created to find which of two integers 

is bigger.
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The Components of a Method

� Method declarations have six components, in order:

– Modifiers

– The return type

– The method name

– The parameters

– An exception list– An exception list

– The method body
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The Modifiers

� The modifier, which is optional, tells the 

compiler how to call the method.
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The Return Type

� A method may return a value. 

� The returnValueType is the data type of the 

value the method returns. 

� If the method does not return a value, the 

returnValueType is the keyword void. returnValueType is the keyword void. 

� For example, the returnValueType in the main

method is void.
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The Return Type

� The method that returns a value is called a 

nonvoid method, and the method that does 

not return a value is called a void method.

� In other languages, a method with a nonvoid � In other languages, a method with a nonvoid 

return value type is called a function, and a 

method with a void return value type is called a 

procedure.
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The Method Name

� A method name can be any legal identifier

� By convention, the first (or only) word in a 

method name should be a verb in lowercase.

� Or a multi-word name that begins with a verb in 

lowercase, followed by adjectives, nouns, etc. lowercase, followed by adjectives, nouns, etc. 

� In multiword names, the first letter of each of 

the second and following words should be 

capitalized. 
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The Method Name

� Here are some examples:

run 

runFast 

getBackground 

getFinalData getFinalData 

compareTo 

setX 

isEmpty 



Objects

The Parameters

� The variables defined in the method header 

are known as formal parameters.

� When a method is invoked, you pass a value to 

the parameter. This value is referred to as the parameter. This value is referred to as 

actual parameter or argument.
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The Parameters

� You need to declare a separate data type for 

each parameter. 

� For instance, int num1, num2 should be 

replaced by int num1, int num2.replaced by int num1, int num2.
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Method signature

� Two of the components of a method 

declaration comprise the method signature:

– the method's name

– the parameter list

� An example of a method declaration: 
public double calculateAnswer(double wingSpan, int 

numberOfEngines, double length, double grossTons) { 

// do the calculation here 

}

� The signature of the method declared above is:
calculateAnswer(double, int, double, double) 
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Method Body

� The method body contains a collection of 

statements that define what the method does. 

� The method terminates when a return 

statement is executed.statement is executed.

� The keyword return is required for a nonvoid 

method to return a result. 
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Calling a Method

� To use a method, you have to call or invoke it. 

� There are two ways to call a method.

� If the method returns a value, a call to the 

method is usually treated as a value. For 

example:example:

int larger = max(3, 4);

System.out.println(max(3, 4));

� If the method returns void, a call to the method 

must be a statement. For example:

System.out.println("Welcome to Java!");
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Calling a Method
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Calling a Method

� When the max method is invoked, the flow 

of control transfers to the max method. 

Once the max method is finished, it returns 

the control back to the caller.
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Caution

� A return statement is required for a nonvoid 

method. 

� The method shown left below in (a) is logically 

correct, but it has a compilation error:
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Reuse Methods from Other Classes

� One of the benefits of methods is for reuse. 

� The max method can be invoked from any 

class besides TestMax. 

� You can invoke the max method from other 

classes using ClassName.methodName (i.e., classes using ClassName.methodName (i.e., 

TestMax.max).
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Call Stacks

� Each time a method is invoked, the system 

stores parameters and variables in an area of 

memory, known as a stack, which stores 

elements in last-in first-out fashion. 

� When a method calls another method, the � When a method calls another method, the 

caller's stack space is kept intact, and new 

space is created to handle the new method 

call. 

� When a method finishes its work and returns to 

its caller, its associated space is released.
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Call Stacks
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A void Method Example
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Passing Parameters

� The arguments must match the parameters in 

order, number, and compatible type, as defined 

in the method signature.

� When you invoke a method with a parameter, 

the value of the argument is passed to the the value of the argument is passed to the 

parameter. 

� This is referred to as pass-by-value. 
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Passing Parameters

� If the argument is a variable rather than a literal 

value, the value of the variable is passed to the 

parameter. 

� The variable is not affected, regardless of the 

changes made to the parameter inside the changes made to the parameter inside the 

method.
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Passing Parameters
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Passing Parameters
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Passing Parameters
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Passing Parameters

� Another twist is to change the parameter name 

n1 in swap to num1. 

� What effect does this have? 

� No change occurs because it makes no 

difference whether the parameter and the difference whether the parameter and the 

argument have the same name.

� For simplicity, Java programmers often say 

passing an argument x to a parameter y, which 

actually means passing the value of x to y.



Overloading Methods



Objects

Overloading Methods

� Method overloading is referred when two 

methods have the same name but different 

parameter lists within one class. 

� Java can distinguish between methods with 

different method signatures. different method signatures. 

� The Java compiler determines which method is 

used based on the method signature.
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Overloading Methods

� The max method that was used earlier works 

only with the int data type. 

� But what if you need to find which of two 

floating-point numbers has the maximum 

value? value? 

� The solution is to create another method with 

the same name but different parameters.
public static double max(double num1, double num2)  { 

if (num1 > num2) 

return num1; 

else 

return num2; 

}
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Overloading Methods
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Overloading Methods
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Overloading Methods

� Can you invoke the max method with an int

value and a double value, such as max(2, 

2.5)? 

� Yes, the max method for finding the maximum 

of two double values is invoked. of two double values is invoked. 

� The argument value 2 is automatically 

converted into a double value and passed to 

this method.
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Ambiguous invocation
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Ambiguous invocation

� Sometimes there are two or more possible 

matches for an invocation of a method, but the 

compiler cannot determine the most specific 

match. 

� This is referred to as ambiguous invocation. � This is referred to as ambiguous invocation. 

� Ambiguous invocation causes a compilation 

error. 
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The Scope of Local Variables

� The scope of a variable is the part of the 

program where the variable can be referenced.

� variable defined inside a method is referred to 

as a local variable.

� The scope of a local variable starts from its � The scope of a local variable starts from its 

declaration and continues to the end of the 

block that contains the variable.

� A parameter is actually a local variable. The 

scope of a method parameter covers the entire 

method.
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The Scope of Local Variables

� A variable declared in the initial action part of a for loop 

header has its scope in the entire loop. 

� But a variable declared inside a for loop body has its 

scope limited in the loop body from its declaration to 

the end of the block that contains the variable
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The Scope of Local Variables

� You can declare a local variable with the same 

name multiple times in different non-nesting 

blocks in a method, but you cannot declare a 

local variable twice in nested blocks
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The Scope of Variables

� Do not declare a variable inside a block and 

then attempt to use it outside the block. Here is 

an example of a common mistake:

for (int i = 0; i < 10; i++) {

} } 

System.out.println(i); 

� The last statement would cause a syntax error 

because variable i is not defined outside of the 

for loop.



Method Abstraction



Objects

Method Abstraction

� Method abstraction is achieved by separating 

the use of a method from its implementation. 

� The details of the implementation are 

encapsulated in the method and hidden from 

the client who invokes the method. the client who invokes the method. 

� This is known as information hiding or 

encapsulation. 

� If you decide to change the implementation, 

the client program will not be affected, provided 

that you do not change the method signature. 
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Method Abstraction

� You can think of the method body as a black 

box that contains the detailed implementation 

for the method.
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Method Abstraction

� You have already used the System.out.println 

method to print.

� You know how to write the code to invoke this 

method in your program, but as a user of this 

method, you are not required to know how it is method, you are not required to know how it is 

implemented.
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Method Abstraction

� The concept of method abstraction can be 

applied to the process of developing programs. 

� When writing a large program, you can use the 

"divide and conquer" strategy, also known as 

stepwise refinement, to decompose it into stepwise refinement, to decompose it into 

subproblems. 

� The subproblems can be further decomposed 

into smaller, more manageable problems.
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