
13. Packages

Java

Summer 2008

Instructor: Dr. Masoud Yaghini



Packages

Outline

� Package Naming & Directories

� Putting Classes into Packages

� Using Classes from Packages

� References� References



Packages

Introduction

� Packages are used to group classes. 

� You can explicitly specify a package for each 

class. 



Packages

Reasons for using packages

1. To avoid naming conflicts. 
– When you develop reusable classes to be shared 

by other programmers, naming conflicts often 
occur. To prevent this, put your classes into 
packages so that they can be referenced through 
package names.package names.

2. To distribute software conveniently. 
– Packages group related classes so that they can 

be easily distributed.

3. To protect classes. 
– Packages provide protection so that the protected 

members of the classes are accessible to the 
classes in the same package, but not to the 
external classes.



Package Naming & Directories



Packages

Package Naming

� Packages are hierarchical, and you can have 

packages within packages. 

� For example, java.lang.Math indicates that 

Math is a class in the package lang and that 

lang is a package in the package java.lang is a package in the package java.

� Levels of nesting can be used to ensure the 

uniqueness of package names.



Packages

Package Naming

� Choosing a unique name is important because your 

package may be used on the Internet by other 

programs. 

� Java designers recommend that you use your Internet 

domain name in reverse order as a package prefix. 

Since Internet domain names are unique, this prevents � Since Internet domain names are unique, this prevents 

naming conflicts. 

� Suppose you want to create a package named 

mypackage on a host machine with the Internet 

domain name prenhall.com. 

� To follow the naming convention, you would name the 

entire package com.prenhall.mypackage. 



Packages

Naming a Package

� Package names are written in all lowercase to 

avoid conflict with the names of classes or 

interfaces.

� Packages in the Java language itself begin 

with java. or javax.with java. or javax.



Packages

Package Directories

� Java expects one-to-one mapping of the package 

name and the file system directory structure. 

� For the package named com.prenhall.mypackage, you 

must create a directory, as shown below:

� In other words, a package is actually a directory that 

contains the bytecode of the classes.



Putting Classes into Packages



Packages

Putting Classes into Packages

� Every class in Java belongs to a package. 

� The class is added to a package when it is 

compiled. 

� All the classes that you have used so far were 

placed in the current directory (a default placed in the current directory (a default 

package) when the Java source programs 

were compiled. 



Packages

Putting Classes into Packages

� Every class in Java belongs to a package. 

� The class is added to a package when it is 
compiled. 

� All the classes that you have used so far were 
placed in the current directory (a default package) placed in the current directory (a default package) 
when the Java source programs were compiled. 

� To put a class in a specific package, you need to 
add the following line as the first noncomment and 
nonblank statement in the program:

package packagename;



Packages

Putting Classes into Packages

� Let us create a class named Format and place 

it in the package com.prenhall.mypackage. 

� The Format class contains the format(number, 

numberOfDecimalDigits) method

� It returns a new number with the specified � It returns a new number with the specified 

number of digits after the decimal point. 

� For example, format(10.3422345, 2) returns 

10.34, and format (-0.343434, 3) returns -

0.343.



Packages

Putting Classes into Packages



Packages

Putting Classes into Packages

� A class must be defined as public in order to 

be accessed by other programs. 

� If you want to put several public classes into 

the package, you have to create separate 

source files for them, because each file can source files for them, because each file can 

have only one public class.



Packages

Source& Class file directory in IntelliJ IDEA

� IntelliJ IDEA uses the projectname\src

directory path to store source files

� For example, if the project name is Packages

and the package statement in the source code 

is is 

package com.prenhall.mypackage;

� then the source code file is automatically 

stored in \Packages \src\com\prenhall\mypackage\

� IntelliJ IDEA uses the projectname\out\

directory path to store class files



Using Classes from Packages



Packages

Option 1



Packages

Option 2



Packages

Using Classes from Packages

� If you create a new class in the same package 

with Format, you can invoke the format method 

using ClassName.methodName (e.g., 

Format.format). 



Packages

Option 3



Packages

Using Classes from Packages

� If you create a new class in a different 

package, you can invoke the format method in 

two ways. 

� One way is to use the fully qualified name of 

the class. the class. 

packagename.ClassName.methodName

� For example: 

com.prenhall.mypackage.Format.format

� This is convenient if the class is used only a 

few times in the program. 



Packages

Option 4



Packages

Using Classes from Packages

� The other way is to use the import statement. 

� For example, to import the class Format in the 

you can use:

import com.prenhall.mypackage.Format;



Packages

Option 5



Packages

Using Classes from Packages

� The program uses an import statement to get 

the class Format.

� You can import entire classes by: 

com.prenhall.mypackage.*. 

� You cannot import entire packages, such as � You cannot import entire packages, such as 

com.prenhall.*.*. 

� Only one asterisk (*) can be used in an import 

statement.



References



Packages

References

� Y. Daniel Liang, Introduction to Java 

Programming, Sixth Edition, 

Pearson Education, 2007. (Chapter 5)



The End 


