
14. Array Basics

Java

Summer 2008

Instructor: Dr. Masoud Yaghini

Arrays

Outline

� Introduction

� Declaring an Array

� Creating Arrays

� Accessing an Array� Accessing an Array

� Simple Processing on Arrays

� Copying Arrays

� References

Introduction

Arrays

A problem with simple variables

� One variable holds one value

– The value may change over time, but at any given

time, a variable holds a single value

� If you want to keep track of many values, you

need many variablesneed many variables

� All of these variables need to have names

� What if you need to keep track of hundreds or

thousands of values?

Arrays

Arrays

� An array lets you associate one name with a

fixed number of values

� All values must have the same type

� Each item in an array is called an element

The values are distinguished by a numerical � The values are distinguished by a numerical

index between 0 and array size minus 1

� The length of an array is established when the

array is created.

Arrays

An array of ten elements

Arrays

An Example

Arrays

The output from the program

Declaring an Array

Arrays

Declaring an Array

� Declaring an array:
datatype[] arrayRefVar;

� Example:

double[] myList;double[] myList;

� An array declaration has two components:

– the array's type, and

– the array's name

Arrays

Declaring an Array

� An array's type is written as type[], where:

– type is the data type of the contained elements;

– the square brackets are special symbols indicating

that this variable holds an array.

� The size of the array is not part of its type � The size of the array is not part of its type

(which is why the brackets are empty).

� Unlike declarations for primitive data type

variables, the declaration of an array variable

does not allocate any space in memory for the

array.

Arrays

Declaring an Array

� An array's name can be anything you want,

provided that it follows the rules and

conventions as variables.

� The declaration does not actually create an

array, it simply tells the compiler that this array, it simply tells the compiler that this

variable will hold an array of the specified type.

Arrays

Declaring an Array

� Similarly, you can declare arrays of other

types:

– byte[] anArrayOfBytes;

– short[] anArrayOfShorts;

– long[] anArrayOfLongs;– long[] anArrayOfLongs;

– float[] anArrayOfFloats;

– double[] anArrayOfDoubles;

– boolean[] anArrayOfBooleans;

– char[] anArrayOfChars;

– String[] anArrayOfStrings;

Arrays

Declaring an Array

� You can also place the square brackets after

the array's name:

– float anArrayOfFloats[];

� However, convention discourages this form� However, convention discourages this form

� The brackets identify the array type and should

appear with the type designation.

Arrays

Declaring an Array

� You can declare more than one variable in the

same declaration:

int a[], b, c[], d; // notice position of brackets

� a and c are int arrays

� b and d are just intsb and d are just ints

� Another syntax:

int [] a, b, c, d; // notice position of brackets

� a, b, c and d are int arrays

– When the brackets come before the first variable,

they apply to all variables in the list

� But, in Java, we typically declare each variable

separately

Creating Arrays

Arrays

Creating Arrays

� You cannot assign elements to an array unless

it has already been created.

� After an array variable is declared, you can

create an array by using the new operator with

the following syntax:the following syntax:
arrayRefVar = new dataType[arraySize];

� This statement does two things:

– (1) it creates an array using new

dataType[arraySize];

– (2) it assigns the reference of the newly created

array to the variable arrayRefVar.

Arrays

Creating Arrays

� Example:

anArray = new int[10]; // create an array of integers

� This statement allocates an array with enough

memory for ten integer elements and assigns memory for ten integer elements and assigns

the array to the anArray variable

� If this statement were missing, the compiler

would print an error like the following, and

compilation would fail:

– Variable anArray might not have been initialized.

Arrays

Declaring and Creating in One Step

� Declaring an array variable, creating an array,

and assigning the reference of the array to the

variable can be combined in one statement, as

shown below:

dataType[] arrayRefVar = new dataType[arraySize];dataType[] arrayRefVar = new dataType[arraySize];

� Here is an example of such a statement:

double[] myList = new double[10];

Arrays

Creating Arrays

Arrays

Array Size

� Once an array is created, its size is fixed. It

cannot be changed.

� you can use the built-in length property to

determine the size of any array:determine the size of any array:

– System.out.println(anArray.length);

� The code will print the array's size to standard

output.

Arrays

Default Values

� When an array is created, its elements are

assigned the default value of:

– 0 for the numeric primitive data types,

– '\u0000' for char types, and

– false for boolean types.– false for boolean types.

Accessing an Array

Arrays

Accessing an Array

� The array elements are accessed through the

index.

� The array indices are 0-based, i.e., it starts

from 0 to arrayRefVar.length-1.

� Each element in the array is represented � Each element in the array is represented

using the following syntax, known as an

indexed variable:

arrayRefVar[index];

Arrays

Accessing an Array

� Each array element is accessed by its

numerical index.

� Example:
– System.out.println("Element 1 at index 0: " + anArray[0]);

– System.out.println("Element 2 at index 1: " + anArray[1]);– System.out.println("Element 2 at index 1: " + anArray[1]);

– System.out.println("Element 3 at index 2: " + anArray[2]);

Arrays

Initializing an Array

� The next few lines assign values to each

element of the array:

– anArray[0] = 100; // initialize first element

– anArray[1] = 200; // initialize second element

– anArray[2] = 300; // initialize third element– anArray[2] = 300; // initialize third element

Arrays

Accessing an Array

� Examples:

12 43 6 83 14 -57 109 12 0 6

0 1 2 3 4 5 6 7 8 9

myArray

• x = myArray[1]; // sets x to 43

• myArray[4] = 99; // replaces 14 with 99

• m = 5;

y = myArray[m]; // sets y to -57

• z = myArray[myArray[9]]; // sets z to 109

Arrays

Declare, Create and Initialize an Array

double[] myList = {1.9, 2.9, 3.4, 3.5};

� This shorthand notation is equivalent to the

following statements:

double[] myList = new double[4];

myList[0] = 1.9;

myList[1] = 2.9;

myList[2] = 3.4;

myList[3] = 3.5;

� Here the length of the array is determined by

the number of values provided between { and }.

Arrays

Caution

� Using the shorthand notation, you have to
declare, create, and initialize the array all in one
statement.

� Splitting it would cause a syntax error. For
example, the following is wrong:example, the following is wrong:

double[] myList;

myList = {1.9, 2.9, 3.4, 3.5};

Arrays

An Example

Simple Processing on Arrays

Arrays

Processing Arrays

� When processing array elements, you will often

use a for loop.

� Here are the reasons why:

– All of the elements in an array are of the same type.

They are evenly processed in the same fashion by They are evenly processed in the same fashion by

repeatedly using a loop.

– Since the size of the array is known, it is natural to

use a for loop.

Arrays

Initializing arrays

� The following loop initializes the array myList

with random values between 0.0 and 99.0:

for (int i = 0; i < myList.length; i++) {

myList[i] = Math.random() * 100; myList[i] = Math.random() * 100;

}

� Math.random() generates a random double

value greater than or equal to 0.0 and less than

1.0 (0.0 <= Math.random() < 1.0).

Arrays

Printing arrays

� To print an array:

for (int i = 0; i < myList.length; i++) {

System.out.print(myList[i] + " ");

}

For an array of the char[] type, it can be � For an array of the char[] type, it can be

printed using one print statement.

� For example, the following code displays

Dallas:

char[] city = {'D', 'a', 'l', 'l', 'a', 's'};

System.out.println(city);

Arrays

Finding the largest element

� Use a variable named max to store the largest

element:

double max = myList[0];

for (int i = 1; i < myList.length; i++) { for (int i = 1; i < myList.length; i++) {

if (myList[i] > max)

max = myList[i];

}

Arrays

Finding the smallest index of the largest element

� Often you need to locate the largest element in

an array. If an array has more than one largest

element, find the smallest index of such an

element.

double max = myList[0]; double max = myList[0];

int indexOfMax = 0;

for (int i = 1; i < myList.length; i++) {

if (myList[i] > max) {

max = myList[i];

indexOfMax = i;

}

}

Arrays

Enhanced for statement

� Enhanced for statement can be used to make

your loops more compact and easy to read.

� The following program uses the enhanced for

to loop through the array:

Copying Arrays

Arrays

Copying Arrays

� Often you need to duplicate an array or a part

of an array.

� In such cases you may attempt to use the

assignment statement (=), as follows:

list2 = list1;list2 = list1;

� This statement does not copy the contents of

the array referenced

� It merely copies the reference value from list1

to list2.

� The array previously referenced by list2 is no

longer referenced; it becomes garbage

Arrays

Before and after assignment

Arrays

Copying Arrays

� Using a loop:

int[] sourceArray = {2, 3, 1, 5, 10};

int[] targetArray = new int[sourceArray.length];

for (int i = 0; i < sourceArray.length; i++) {

targetArray[i] = sourceArray[i]; targetArray[i] = sourceArray[i];

}

Arrays

Copying Arrays

� The System class has an arraycopy method that you
can use to efficiently copy data from one array into
another:

arraycopy(sourceArray, srcPos,

targetArray, tarPos, length);

� The arguments specify:
– sourceArray: the array to copy from (source array)

– srcPos: the array to copy to (destination array)

– targetArray: the starting position in the source array

– tarPos: the starting position in the destination array

– length: the number of array elements to copy

Arrays

ArrayCopyDemo Program

� Output?

caffein

Arrays

ArrayCopyDemo Program

� The arraycopy method does not allocate

memory space for the target array.

� The target array must have already been

created with its memory space allocated.

� The arraycopy method violates the Java � The arraycopy method violates the Java

naming convention. By convention, this method

should be named arrayCopy (i.e., with an

uppercase C).

References

Arrays

References

� Y. Daniel Liang, Introduction to Java

Programming, Sixth Edition,

Pearson Education, 2007. (Chapter 5)

� S. Zakhour and et. al., The Java Tutorial: A

Short Course on the Basics, 4th Edition, Short Course on the Basics, 4th Edition,

Prentice Hall, 2006. (Chapter 3)

The End

