
16. Processing Arrays

Java

Summer 2008

Instructor: Dr. Masoud Yaghini



Processing Arrays

Outline

� Searching Arrays

� Sorting Arrays

� Arrays Class

� References� References



Searching Arrays 



Processing Arrays

Searching Arrays

� Searching is the process of looking for a 

specific element in an array

� There are many algorithms and data structures 

devoted to searching. 

� In this section, two commonly used � In this section, two commonly used 

approaches are discussed:

– Linear search

– Binary search



Processing Arrays

Linear Search

� The linear search approach compares the key 

element, key sequentially with each element in 

the array. 

� The method continues to do so until the key 

matches an element in the array or the array is matches an element in the array or the array is 

exhausted without a match being found. 

� If a match is made, the linear search returns 

the index of the element in the array that 

matches the key. 

� If no match is found, the search returns -1. 



Processing Arrays

Linear Search Animation

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

3

3

3

Key List

6

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

6 4 1 9 7 3 2 8

3

3

3

3



Processing Arrays

Linear Search

� Trace the method using the following 

statements:
int[] list = {1, 4, 4, 2, 5, -3, 6, 2}; 

int i = linearSearch(list, 4); 

int j = linearSearch(list, -4); 

int k = linearSearch(list, -3); 



Processing Arrays

Linear Search

� The result:
int[] list = {1, 4, 4, 2, 5, -3, 6, 2}; 

int i = linearSearch(list, 4); // returns 1 

int j = linearSearch(list, -4); // returns -1 

int k = linearSearch(list, -3); // returns 5 

On average, the algorithm will have to compare � On average, the algorithm will have to compare 

half of the elements in an array before finding 

the key if it exists. 

� Since the execution time of a linear search 

increases linearly as the number of array 

elements increases, linear search is inefficient 

for a large array.



Processing Arrays

Binary Search

� For binary search to work, the elements in the 

array must already be ordered. 

� Without loss of generality, assume that the 

array is in ascending order.

e.g., 2 4 7 10 11 45 50 59 60 66 69 70 79e.g., 2 4 7 10 11 45 50 59 60 66 69 70 79

� The binary search first compares the key with 

the element in the middle of the array.



Processing Arrays

Binary Search Approach



Processing Arrays

Binary Search Approach

� The binary search returns the index of the 

search key if it is contained in the list. 

� Otherwise, it returns -(insertion point + 1). 

� The insertion point is the point at which the key 

would be inserted into the list. would be inserted into the list. 

� For example, 

– the insertion point for key 5 is 2, so the binary 

search returns -3; 

– the insertion point for key 51 is 7, so the binary 

search returns -8.



Processing Arrays

Binary Search Approach



Processing Arrays

Binary Search Approach

� Trace the program using the following 

statements:
int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 

69, 70, 79}; 

int i = binarySearch(list, 2); // returns 0 

int j = binarySearch(list, 11); // returns 4 int j = binarySearch(list, 11); // returns 4 

int k = binarySearch(list, 12); // returns –6 



Processing Arrays

Binary Search Approach

� Linear search is useful for finding an element in 

a small array or an unsorted array, but it is 

inefficient for large arrays. 

� Binary search is more efficient, but requires 

that the array be pre-sorted.that the array be pre-sorted.



Sorting Arrays 



Processing Arrays

Sorting Arrays

� Many different algorithms have been 

developed for sorting. 

� This section introduces two simple sorting 

algorithms: 

– Selection sort– Selection sort

– Insertion sort.



Processing Arrays

Selection Sort

� Selection sort finds the largest number in the 

list and places it last. 

� It then finds the largest number remaining and 

places it next to last, and so on until the list 

contains only a single number. contains only a single number. 



Processing Arrays

Selection Sort

� The figure shows how 

to sort a list 

{2, 9, 5, 4, 8, 1, 6} 

using selection sort.



Processing Arrays

Selection Sort



Processing Arrays

Selection Sort



Processing Arrays

Insertion Sort

� The insertion-sort algorithm sorts a list of 

values by repeatedly inserting a new element 

into a sorted sublist until the whole list is 

sorted.

� The Figure shows how to sort a list {2, 9, 5, 4, � The Figure shows how to sort a list {2, 9, 5, 4, 

8, 1, 6} using insertion sort.



Processing Arrays

Insertion Sort



Processing Arrays

Insertion Sort

� How to Insert?



Processing Arrays

Insertion Sort



Processing Arrays

Insertion Sort



Arrays Class



Processing Arrays

Arrays Class

� The java.util.Arrays class contains various 

static methods for sorting and searching 

arrays, comparing arrays, and filling array 

elements. 

� These methods are overloaded for all primitive � These methods are overloaded for all primitive 

types.



Processing Arrays

The sort Method

� You can use the sort method to sort a whole 

array or a partial array.

double[] numbers = {6.0, 4.4, 1.9, 2.9, 3.4, 3.5}; 

java.util.Arrays.sort(numbers); java.util.Arrays.sort(numbers); 

// Sort the whole array 

char[] chars = {'a', 'A', '4', 'F', 'D', 'P'}; 

java.util.Arrays.sort(chars, 1, 3); 

// Sort part of the array 



Processing Arrays

The binarySearch Method

� You can use the binarySearch method to 

search for a key in an array. 

� The array must be pre-sorted in increasing 

order. If the key is not in the array, the method 

returns -(insertion point +1). returns -(insertion point +1). 

�



Processing Arrays

The binarySearch Method

int[] list = {2, 4, 7, 10, 11, 45, 50, 59, 60, 66, 

69, 70, 79}; 

System.out.println("(1) Index is " + 

java.util.Arrays.binarySearch(list, 11)); 

System.out.println("(2) Index is " + 

java.util.Arrays.binarySearch(list, 12)); 

char[] chars = {'a', 'c', 'g', 'x', 'y', 'z'}; 

System.out.println("(3) Index is " + 

java.util.Arrays.binarySearch(chars, 'a')); 

System.out.println("(4) Index is " + 

java.util.Arrays.binarySearch(chars, 't')); 

� Output?



Processing Arrays

The binarySearch Method

� The output of the code is
(1) Index is 4

(2) Index is -6

(3) Index is 0

(4) Index is -4(4) Index is -4



Processing Arrays

The equals method

� You can use the equals method to check 

whether two arrays are equal. Two arrays are 

equal if they have the same contents.
int[] list1 = {2, 4, 7, 10}; 

int[] list2 = {2, 4, 7, 10}; int[] list2 = {2, 4, 7, 10}; 

int[] list3 = {4, 2, 7, 10}; 

System.out.println(java.util.Arrays.equals

(list1, list2)); // true 

System.out.println(java.util.Arrays.equals

(list2, list3)); // false



Processing Arrays

The fill method

� You can use the fill method to fill in the whole 

array or part of the array.
int[] list1 = {2, 4, 7, 10}; 

int[] list2 = {2, 4, 7, 10}; 

// fill 5 to the whole array 

java.util.Arrays.fill(list1, 5); 

// fill 8 to a partial array 

java.util.Arrays.fill(list2, 1, 3, 8); 



Processing Arrays

Array Class

� You can find all methods from the following 

URL:

http://java.sun.com/javase/6/docs/api/



References



Processing Arrays

References

� Y. Daniel Liang, Introduction to Java 
Programming, Sixth Edition, 

Pearson Education, 2007. (Chapter 6)

� S. Zakhour and et. al., The Java Tutorial: A 
Short Course on the Basics, 4th Edition, Short Course on the Basics, 4th Edition, 

Prentice Hall, 2006. (Chapter 3)



The End 


