
18. Objects and Classes

Java

Summer 2008

Instructor: Dr. Masoud Yaghini

Objects and Classes

Outline (1)

� Introduction

� Defining Classes for Objects

� Constructors

� Creating Objects � Creating Objects

� Accessing an Object's Data and Methods

� An Example: CreatObjectDemo.java

� An Example: TestCircle1.java

� Reference Data Fields and the null Value

� Differences Between Variables of Primitive Types

and Reference Types

Objects and Classes

Outline (2)

� Using Classes from the Java Library

� Static Variables, Constants, and Methods

� Visibility Modifiers

� Data Field Encapsulation� Data Field Encapsulation

� Immutable Objects and Classes

� Passing Objects to Methods

� The Scope of Variables

� Array of Objects

� References

Introduction

Objects and Classes

Procedural Programming Languages

� Programming in procedural languages like C,

Pascal, BASIC, and COBOL involves:

– choosing data structures,

– designing algorithms, and

– translating algorithms into code. – translating algorithms into code.

� In procedural programming, data and

operations on the data are separate, and this

methodology requires sending data to

methods.

Objects and Classes

OO Programming Concepts

� Object-oriented programming (OOP)

involves programming using objects.

� An object represents an entity in the real

world that can be distinctly identified. For

example:example:

– a student

– a desk

– a circle

– a button

– a loan

Objects and Classes

OO Programming Concepts

� An object has a unique identity, state, and

behaviors.

� State :

– The state of an object consists of a set of data fields
(also known as properties) with their current values. (also known as properties) with their current values.

– The state defines the object.

� Behavior :

– The behavior of an object is defined by a set of

methods.

– Invoking a method on an object means that you ask

the object to perform a task.

– The behavior defines what the object does.

Defining Classes for Objects

Objects and Classes

Defining Classes for Objects

� A circle object, for example, has a data field,

radius, which is the property that characterizes

a circle.

� One behavior of a circle is that its area can be

computed using the method getArea().computed using the method getArea().

Objects and Classes

Defining Classes for Objects

� Classes are templates or blueprints that define

objects of the same type

� A class defines what an object's data and

methods will be.

� An object is an instance of a class. � An object is an instance of a class.

� You can create many instances of a class.

� Creating an instance is referred to as

instantiation.

� The terms object and instance are often

interchangeable.

Objects and Classes

Defining Classes for Objects

� This Figure shows a class named Circle and its

three objects.

Objects and Classes

Defining Classes for Objects

� A Java class uses variables to define data
fields and methods to define behaviors.

� A class provides methods of a special type,

known as constructors, which are invoked

when a new object is created. when a new object is created.

� A constructor is a special kind of method.

� A constructor can perform any action, but

constructors are designed to perform initializing

actions, such as initializing the data fields of

objects.

Objects and Classes

Defining Classes for Objects

� General form of class declaration:
class MyClass {

// class body: field, constructor, and method declarations

}

� The class body (the area between the braces) The class body (the area between the braces)

contains:

– declarations for the fields that provide the state of

the class and its objects

– constructors for initializing new objects

– methods to implement the behavior of the class

and its objects

Objects and Classes

Defining Classes for Objects

� An example of the class for Circle objects

Objects and Classes

Defining Classes for Objects

� The Circle class does not have a main method

and therefore cannot be run.

� It is merely a definition used to declare and

create Circle objects.

� The illustration of class templates and objects � The illustration of class templates and objects

in can be standardized using UML (Unified

Modeling Language) notations.

Objects and Classes

UML Class Diagram

� The data field is denoted as:

dataFieldName: dataFieldType

� The constructor is denoted as

ClassName(parameterName: parameterType)

� The method is denoted as:

methodName(parameterName: parameterType): returnType

Constructors

Objects and Classes

Constructors

� Constructors are a special kind of methods that are

invoked to construct objects.

� The constructor has exactly the same name as the

defining class.

� Like regular methods, constructors can be overloaded,

making it easy to construct objects with different initial making it easy to construct objects with different initial

data values.

Circle() {

}

Circle(double newRadius) {

radius = newRadius;

}

Objects and Classes

Constructors

� To construct an object from a class, invoke a

constructor of the class using the new

operator, as follows:

new ClassName(arguments);

� For example:

– new Circle() creates an object of the Circle class

using the first constructor defined in the Circle class

– new Circle(5) creates an object using the second

constructor defined in the Circle class.

Objects and Classes

Default Constructor

� A constructor with no parameters is referred to

as a no-arg constructor (e.g., Circle()).

� A class may be declared without constructors.

� In this case, a no-arg constructor with an

empty body is implicitly declared in the class. empty body is implicitly declared in the class.

� This constructor, called a default constructor,
is provided automatically only if no constructors

are explicitly declared in the class.

Objects and Classes

Constructors

� Constructors are a special kind of method, with

three differences:

– Constructors must have the same name as the

class itself.

– Constructors do not have a return type—not even – Constructors do not have a return type—not even

void.

– Constructors are invoked using the new operator

when an object is created. Constructors play the

role of initializing objects.

Creating Objects

Objects and Classes

Creating Objects

� To create an object you should:

– the declare of an object reference variable

– the create of an object

– the assign of the object reference to the variable

Objects and Classes

Creating Objects

� To reference an object, assign the object to a
reference variable.

� Any variable of the class type can reference to
an instance of the class.

� To declare an object reference variable, use
the syntax:

ClassName objectRefVar;

� Example:
Circle myCircle;

Objects and Classes

Creating Objects

� The variable myCircle can reference a Circle

object.

� This statement creates an object and assigns

its reference to myCircle.

myCircle = new Circle();

Objects and Classes

Creating Objects

� You can write one statement that combines

– the declaration of an object reference variable,

– the creation of an object, and

– the assigning of the object reference to the variable.

ClassName objectRefVar = new ClassName();

� An example:

Circle myCircle = new Circle();

Objects and Classes

Creating Objects

� myCircle is not an object but it a variable that

contains a reference to a Circle object.

� For simplicity, we say that myCircle is a Circle

object

Accessing an Object's Data and
Methods

Objects and Classes

Accessing an Object's Data and Methods

� After an object is created, its data can be

accessed and its methods invoked using the

dot operator (.), also known as the object

member access operator:

� To access a data field in the object:� To access a data field in the object:

– objectRefVar.dataField

– e.g., myCircle.radius

� To invoke a method on the object:

– objectRefVar.method(arguments)

– e.g., myCircle.getArea()

Objects and Classes

Accessing an Object's Data and Methods

� Instance variable :

– The data field radius is referred to as an instance
variable because it is dependent on a specific

instance.

� Instance method :� Instance method :
– The method getArea is referred to as an instance

method, because you can only invoke it on a

specific instance.

� The object on which an instance method is

invoked is referred to as a calling object.

Objects and Classes

Anonymous Object

� You can create an object without explicitly

assigning it to a variable, as shown below:

System.out.println("Area is " + new Circle(5).getArea());

� This statement creates a Circle object and � This statement creates a Circle object and

invokes its getArea method to return its area.

� An object created in this way is known as an

anonymous object.

An Example:
CreatObjectDemo.java

Objects and Classes

An example

Objects and Classes

An example

Objects and Classes

An example

Objects and Classes

An example

Objects and Classes

An example

Objects and Classes

An example

� Here's the output:

Width of rectOne: 100

Height of rectOne: 200

Area of rectOne: 20000

X Position of rectTwo: 23 X Position of rectTwo: 23

Y Position of rectTwo: 94

X Position of rectTwo: 40

Y Position of rectTwo: 72

Objects and Classes

An example

� The following statement provides 23 and 94 as

values for Point class arguments:

Point originOne = new Point(23, 94);

� originOne now points to a Point object.

Objects and Classes

An example

� Rectangle class has different constructors

� but when the Java compiler encounters the

following code:

Rectangle rectOne = new Rectangle(originOne, 100, 200);

� It knows to invoke the constructor in the

Rectangle class that requires a Point argument

followed by two integer arguments.

� Now there are two references to the same

Point object

� An object can have multiple references to it

Objects and Classes

An example

� rectOne now points to a Rectangle object there are two

references to the same Point object:

Objects and Classes

An example

� The following line of code invokes the Rectangle

constructor that requires two integer arguments, which

provide the initial values for width and height. And it

creates a new Point object whose x and y values are

initialized to 0:

Rectangle rectTwo = new Rectangle(50, 100);

� The Rectangle constructor used in the following

statement doesn't take any arguments, so it's called a

no-argument constructor:

Rectangle rect = new Rectangle();

An Example: TestCircle1.java

Objects and Classes

An example

Objects and Classes

An example

Objects and Classes

An example

� The program constructs a circle object with
radius 5 and an object with radius 1 and

displays the radius and area of each of the two

circles.

� Change the radius of the second object to 100� Change the radius of the second object to 100

and display its new radius and area

Objects and Classes

An example

� The program contains two classes.

� The first class, TestCircle1, is the main class.

Its purpose is to test the second class, Circle1.

� Every time you run the program, the JVM

invokes the main method in the main class.invokes the main method in the main class.

� You can put the two classes into one file, but

only one class in the file can be a public class.

� Furthermore, the public class must have the

same name as the file name and the main

method must be in a public class.

Objects and Classes

An example

� To write the getArea method in a procedural

programming language like Pascal, you would

pass radius as an argument to the method.

� But in object-oriented programming, radius and

getArea are defined in the object.getArea are defined in the object.

� The radius is a data member in the object,

which is accessible by the getArea method.

� In procedural programming languages, data

and methods are separated, but in an object-

oriented programming language, data and

methods are grouped together.

Objects and Classes

Other way to write the program

� There are many ways to write Java programs.

� For instance, you can combine the two classes

in the example into one, as shown in next slide.

� This demonstrates that you can test a class by

simply adding a main method in the same simply adding a main method in the same

class.

Objects and Classes

Other way to write the program

Objects and Classes

Other way to write the program

Objects and Classes

An example

� Recall that you use Math.methodName(arguments)

(e.g., Math.pow(3, 2.5)) to invoke a method in the Math

class.

� Can you invoke getArea() using Circle1.getArea()?

� The answer is no. All the methods in the Math class

are static methods, which are defined using the static are static methods, which are defined using the static

keyword.

� However, getArea() is an instance method, and thus

non-static.

� It must be invoked from an object using

objectRefVar.methodName(arguments) (e.g.,

myCircle.getArea()). "

Reference Data Fields and the null
Value

Objects and Classes

Reference Data Fields and the null Value

� The data fields can be of reference types.

� For example, the following Student class

contains a data field name of the String type.

� name is a reference variable.

� String is a predefined Java class.

Objects and Classes

Reference Data Fields and the null Value

Objects and Classes

Reference Data Fields and the null Value

� If a data field of a reference type does not

reference any object, the data field holds a

special Java value, null.

� The default value of a data field is:

– null for a reference type– null for a reference type

– 0 for a numeric type

– false for a boolean type

– '\u0000' for a char type

Objects and Classes

Reference Data Fields and the null Value

� Java assigns no default value to a local variable inside

a method.

� The following code has a compilation error because

local variables x and y are not initialized:

Differences Between Variables of Primitive
Types and Reference Types

Objects and Classes

Differences Between Variables of Primitive Types and Reference
Types

� Every variable represents a memory location

that holds a value.

� When you declare a variable, you are telling

the compiler what type of value the variable

can hold. can hold.

� For a variable of a primitive type, the value is of

the primitive type.

� For a variable of a reference type, the value is

a reference to where an object is located.

Objects and Classes

Differences Between Variables of Primitive Types and Reference
Types

� The value of int variable i is int value 1, and the value

of Circle object c holds a reference to where the

contents of the Circle object are stored in the memory.

Objects and Classes

Differences Between Variables of Primitive Types and Reference
Types

� When you assign one variable to another, the

other variable is set to the same value.

� For a variable of a primitive type, the real value

of one variable is assigned to the other

variable. variable.

Objects and Classes

Differences Between Variables of Primitive Types and Reference
Types

� For a variable of a reference type, the

reference of one variable is assigned to the

other variable.

Objects and Classes

Differences Between Variables of Primitive Types and Reference
Types

� After the assignment statement c1 = c2, c1

points to the same object referenced by c2.

� The object previously referenced by c1 is no

longer useful and therefore is now known as

garbage. garbage.

� Garbage occupies memory space.

� The JVM detects garbage and automatically

reclaims the space it occupies.

� This process is called garbage collection.

Objects and Classes

Differences Between Variables of Primitive Types and Reference
Types

� If you know that an object is no longer needed,

you can explicitly assign null to a reference

variable for the object.

� The JVM will automatically collect the space if
the object is not referenced by any variable.the object is not referenced by any variable.

Using Classes from the Java
Library

Objects and Classes

Using Classes from the Java Library

� You will frequently use the classes in the Java

library to develop programs.

� This section gives some examples of the

classes in the Java library.

Objects and Classes

The Date Class

� Java provides a system-independent encapsulation of

date and time in the java.util.Date class.

� You can use the Date class to create an instance for

the current date and time and use its toString method

to return the date and time as a string.

Objects and Classes

The Date Class

� For example, the following code

� displays the output like this:
The elapse time since Jan 1, 1970 is

1100547210284 milliseconds

Mon Nov 15 14:33:30 EST 2004

Objects and Classes

The Random Class

� You have used Math.random() to obtain a random

double value between 0.0 and 1.0 (excluding 1.0).

� A more useful random number generator is provided in

the java.util.Random class, as shown below:

Objects and Classes

The Random Class

� If two Random objects have the same seed, they will

generate identical sequences of numbers. For

example, the following code creates two Random

objects with the same seed 3.

� The code generates the same sequence of random int values:

From random1: 734 660 210 581 128 202 549 564 459 961

From random2: 734 660 210 581 128 202 549 564 459 961

Static Variables, Constants, and
Methods

Objects and Classes

Instance Variables, and Methods

� Instance variables belong to a specific

instance.

� Instance methods are invoked by an instance

of the class.of the class.

Objects and Classes

Static Variables, Constants, and Methods

� Static variables (Class variable) are shared

by all the instances of the class.

� Static methods are not tied to a specific

object. Static methods can be called without

creating an instance of the class.creating an instance of the class.

� Static constants are final variables shared by

all the instances of the class.

� To declare static variables, constants, and

methods, use the static modifier.

Objects and Classes

Static Variables, Constants, and Methods

� Let us modify the Circle class by adding a static

variable numberOfObjects to count the number of circle

objects created and the static method

getNumberOfObjects

Objects and Classes

Static Variables, Constants, and Methods

� Constants in a class are shared by all objects

of the class.

� Thus, constants should be declared final static.

� For example, the constant PI in the Math class

is defined as:is defined as:

final static double PI = 3.14159265358979323846;

Objects and Classes

Circle2.java

Objects and Classes

Circle2.java

Objects and Classes

TestCircle2.java

Objects and Classes

TestCircle2.java

Objects and Classes

TestCircle2.java

� The output of the program:

Before creating c2

c1 is : radius (1.0) and number of Circle objects (1)

After creating c2 and modifying c1's radius to 9After creating c2 and modifying c1's radius to 9

c1 is : radius (9.0) and number of Circle objects (2)

c2 is : radius (5.0) and number of Circle objects (2)

Objects and Classes

TestCircle2.java

� You can replace Circle2.numberOfObjects by

c1.numberOfObjects and c2.numberOfObjects.

� You can also replace Circle2.numberOfObjects

by Circle2.getNumberOfObjects().

Objects and Classes

Static Variables, Constants, and Methods

� To improve readability use

ClassName.methodName(arguments) to

invoke a static method and

ClassName.staticVariable

� because the user can easily recognize the � because the user can easily recognize the

static method and data in the class.

Objects and Classes

Import static variables and methods

� You can import static variables and methods

from a class.

� The imported data and methods can be

referenced or called without specifying a class.

� For example, you can use PI (instead of � For example, you can use PI (instead of

Math.PI), and random() (instead of

Math.random()),

� if you have the following import statement in

the class:

import static java.lang.Math.*;

Objects and Classes

Static Variables, Constants, and Methods

� Instance methods can use both:

– Static variables and methods, and

– Instance variables and methods

� Static methods can use only:

– Static variables and methods– Static variables and methods

� Because static variables and methods belong

to the class as a whole and not to particular

objects.

Objects and Classes

Static Variables, Constants, and Methods

� What is wrong?

Objects and Classes

Static Variables, Constants, and Methods

Objects and Classes

Static Variables, Constants, and Methods

� How do you decide whether a variable or method

should be an instance one or a static one?

� A variable or method that is dependent on a specific

instance of the class should be an instance variable or

method, otherwise it should be a static variable or

method. method.

� None of the methods in the Math class is dependent on

a specific instance. Therefore, these methods are static

methods.

� The main method is static, and can be invoked directly

from a class.

Visibility Modifiers

Objects and Classes

Visibility Modifiers

� Java provides several modifiers that control
access to data fields, methods, and classes.

� By default, the class, variable, or method can be
accessed by any class in the same package. This
is known as package-private or package-access.is known as package-private or package-access.

� public

– The class, data, or method is visible to any class in

any package.

� private

– The data or methods can be accessed only by the

own class.

Objects and Classes

Visibility Modifiers

� The private modifier restricts access to within a class

� The default modifier restricts access to within a

package

� The public modifier enables unrestricted access

Objects and Classes

Visibility Modifiers

� If a class is not declared public, it can only be

accessed within the same package

Objects and Classes

Visibility Modifiers

� An object cannot access its private members,

as shown in (b). It is OK, however, if the object

is declared in its own class, as shown in (a).

Objects and Classes

Note

� Visibility modifiers are used for the members of

the class, not local variables inside the

methods.

� Using a visibility modifier on local variables

would cause a compilation error.would cause a compilation error.

Objects and Classes

Note

� In most cases, the constructor should be public.

� However, if you want to prohibit the user from creating

an instance of a class, you can use a private

constructor.

� For example, there is no reason to create an instance

from the Math class because all of the data fields and from the Math class because all of the data fields and

methods are static.

� One solution is to define a dummy private constructor

in the class.

� The Math class cannot be instantiated because it has a

private constructor, as follows:

private Math() {

}

Data Field Encapsulation

Objects and Classes

Data Field Encapsulation

� Why Data Fields Should Be private?

� To protect data.
– For example, numberOfObjects is to count the number of

objects created, but it may be set to an arbitrary value (e.g.,
Circle2. numberOfObjects = 10).

� To make class easy to maintain.
– Suppose you want to modify the Circle2 class to ensure that

the radius is non-negative after other programs have already
used the class.

– You have to change not only the Circle2 class, but also the
programs that use the Circle2 class.

– Such programs are often referred to as clients.

Objects and Classes

Data Field Encapsulation

� Data field encapsulation
– To prevent direct modifications of properties, you

should declare the field private, using the private

modifier.

– This is known as data field encapsulation.– This is known as data field encapsulation.

� To make a private data field accessible,

provide a get method to return the value of the

data field.

� To enable a private data field to be updated,

provide a set method to set a new value.

Objects and Classes

Data Field Encapsulation

� A get method is referred to as a getter (or

accessor), and a set method is referred to as

a setter (or mutator).

� get method has the following signature:� get method has the following signature:

public returnType getPropertyName()

� set method has the following signature:

public void setPropertyName(dataType propertyValue)

Objects and Classes

Data Field Encapsulation

� The class diagram to create a new circle class

with a private data field radius and its

associated accessor and mutator methods.

Objects and Classes

Circle3.java

Objects and Classes

Circle3.java

Objects and Classes

TestCircle3.java: Demonstrate private modifier

Objects and Classes

TestCircle3.java: Demonstrate private modifier

� The output:

The area of the circle of radius 5.0 is 78.53981633974483

The area of the circle of radius 5.5 is 95.03317777109125

Objects and Classes

Note

� When you compile TestCircle3.java, the Java

compiler automatically compiles Circle3.java if

it has not been compiled since the last change.

Immutable Objects and Classes

Objects and Classes

Immutable Objects and Classes

� If the contents of an object cannot be changed

once the object is created, the object is called

an immutable object and its class is called an

immutable class.

� If you delete the set method in the Circle3� If you delete the set method in the Circle3

class in the preceding example, the class

would be immutable because radius is private

and cannot be changed without a set method.

Objects and Classes

Immutable Objects and Classes

� class with all private data fields and no

mutators is not necessarily immutable.

Objects and Classes

Immutable Objects and Classes

Objects and Classes

Immutable Objects and Classes

Objects and Classes

Immutable Objects and Classes

Objects and Classes

What Class is Immutable?

� For a class to be immutable:

– it must mark all data fields private and

– provide no mutator methods and

– no accessor methods that would return a reference

to a mutable data field object.to a mutable data field object.

Passing Objects to Methods

Objects and Classes

Passing Objects to Methods

� Like passing an array, passing an object is

actually passing the reference of the object.

� Java uses exactly one mode of passing

arguments: pass-by-value.

Passing by value for primitive type value (the value – Passing by value for primitive type value (the value

is passed to the parameter)

– Passing by value for reference type value (the value

is the reference to the object

Objects and Classes

TestPassObject.java

Objects and Classes

TestPassObject.java

Objects and Classes

TestPassObject.java

� The output:

Radius Area

1.0 3.141592653589793

2.0 12.566370614359172

3.0 28.2743338823081383.0 28.274333882308138

4.0 50.26548245743669

5.0 78.53981633974483

Radius is 6.0

n is 5

Objects and Classes

Passing Objects to Methods

� The figure shows the call stack for executing

the methods in the program. Note that the

objects are stored in a heap.

The Scope of Variables

Objects and Classes

The Scope of Variables

� In Methods chapter, discussed local variables

and their scope rules.

� Local variables are declared and used inside a

method locally.

� This section discusses the scope rules of all � This section discusses the scope rules of all

the variables in the context of a class.

Objects and Classes

The Scope of Variables

� Local variables:

– A variable defined inside a method is referred to as

a local variable.

– The scope of a local variable starts from its

declaration and continues to the end of the block declaration and continues to the end of the block

that contains the variable.

– A local variable must be initialized explicitly before it

can be used.

Objects and Classes

The Scope of Variables

� Instance and static variables:

– Instance and static variables in a class are referred

to as the class's variables or data fields.

– The scope of a class's variables is the entire class,

regardless of where the variables are declared. regardless of where the variables are declared.

– A class's variables and methods can be declared in

any order in the class

� You can declare a class's variable only once,

but you can declare the same variable name in

a method many times in different non-nesting

blocks.

Objects and Classes

The Scope of Variables

� Example:

Objects and Classes

The Scope of Variables

� If a local variable has the same name as a

class's variable, the local variable takes

precedence and the class's variable with the

same name is hidden.

Objects and Classes

The Scope of Variables

Objects and Classes

The Scope of Variables

� As demonstrated in the example, it is easy to

make mistakes.

� To avoid confusion, do not declare the same

variable name twice in a class, except for

method parameters.method parameters.

Array of Objects

Objects and Classes

Array of Objects

� Before arrays of primitive type elements were

created. You can also create arrays of objects.

� The following statement declares and creates

an array of ten Circle objects:

Circle[] circleArray = new Circle[10]; Circle[] circleArray = new Circle[10];

� To initialize the circleArray, you can use a for

loop like this one:

for (int i = 0; i < circleArray.length; i++) {

circleArray[i] = new Circle();

}

Objects and Classes

Array of Objects

� An array of objects is actually an array of

reference variables.

� So invoking circleArray[1].getArea() involves

two levels of referencing

Objects and Classes

TotalArea.java

� TotalArea program summarizes the areas of an

array of circles.

� The program creates circleArray, an array

composed of ten Circle3 objects

� It then initializes circle radii with random � It then initializes circle radii with random

values, and displays the total area of the

circles in the array.

Objects and Classes

TotalArea.java

Objects and Classes

TotalArea.java

Objects and Classes

TotalArea.java

Objects and Classes

TotalArea.java

� The output:
Radius Area

58.068804279569896 10593.406541297387

36.33710413653297 4148.112246400217

85.02001103760188 22708.695490093254

99.67002343283416 31208.93821489979799.67002343283416 31208.938214899797

68.99814612628313 14956.318906523336

66.51192311899847 13897.890417494793

79.79530733791314 20003.43485868224

11.2738794456952 399.29755019510003

43.04292750675902 5820.408629351761

43.85596734227498 6042.369260300506

The total areas of circles is 129778.8721152384

References

Objects and Classes

References

� Y. Daniel Liang, Introduction to Java
Programming, Sixth Edition,

Pearson Education, 2007. (Chapter 6)

� S. Zakhour, S. Hommel, J. Royal, I. � S. Zakhour, S. Hommel, J. Royal, I.

Rabinovitch, T. Risser, M. Hoeber, The Java
Tutorial: A Short Course on the Basics, 4th

Edition, Prentice Hall, 2006. (Chapter 4)

The End

