
21. Text I/O

Java

Summer 2008

Instructor: Dr. Masoud Yaghini

Text I/O

Outline

� File Class

� Writing Data Using PrintWriter

� Reading Data Using Scanner

� Example: Replacing Text� Example: Replacing Text

� References

File Class

Text I/O

File Class

� Data stored in variables, arrays, and objects is

temporary and is lost when the program

terminates.

� To permanently store the data created in a

program, you need to save them in a file on a program, you need to save them in a file on a

disk.

� The file can be transported and can be read

later by other programs.

Text I/O

File Class

� Every file is placed in a directory in the file

system.

� An absolute file name contains a file name

with its complete path and drive letter.

� For example, c:\book\Welcome.java is the � For example, c:\book\Welcome.java is the

absolute file name for the file Welcome.java on

the Windows operating system.

� Here c:\book is referred to as the directory
path for the file.

Text I/O

File Class

� java.io.File is a class that helps you write

platform-independent code that examines and

manipulates files and directories.

� The File class does not contain the methods

for reading and writing file contents.for reading and writing file contents.

� File instances represent file names, not files.

� The file corresponding to the file name might

not even exist.

Text I/O

File Class

� Why create a File object for a file that doesn't

exist?

� The file can be created by passing the File

object to the constructor of some classes, such

as FileWriter.as FileWriter.

� If the file does exist, a program can examine its

attributes and perform various operations on

the file, such as renaming it, deleting it, or

changing its permissions.

Text I/O

File Class

� For example:

– File a = new File(“test.dat");

� creates a File object for the file test.dat

– File a = new File("c:\\book")

� creates a File object for the directory c:\book� creates a File object for the directory c:\book

– File a = new File("c:\\book\\test.dat")

� creates a File object for the file c:\\book\\test.dat

Text I/O

File Class Methods

� exists(): boolean

– Returns true if the file or the directory represented by the File
object exists.

� isDirectory(): boolean

– Returns true if the File object represents a directory.

� isFile(): boolean

– Returns true if the File object represents a file.

� canRead(): boolean

– Returns true if the file represented by the File object

exists and can be read.

� isAbsolute(): boolean

– Returns true if the File object is created using an

absolute path name.

Text I/O

File Class Methods

� isHidden(): boolean

– Returns true if the file represented in the File object

is hidden.

� lastModified(): long

– Returns the time that file was last modified, – Returns the time that file was last modified,

measured in milliseconds since the time (00:00:00

GMT, January 1, 1970).

� getAbsolutePath(): String

– Returns the complete absolute file or directory name

represented by the File object.

Text I/O

TestFileClass.java

Text I/O

TestFileClass.java

� The output:

Does it exist? true

Can it be read? true

Can it be written? true

Is it a directory? falseIs it a directory? false

Is it a file? true

Is it absolute? true

Is it hidden? false

Absolute path is d:\Test\test.dat

Last modified on Sat Sep 20 01:11:54 IRDT 2008

Writing Data Using PrintWriter

Text I/O

Text I/O

� A File object encapsulates the properties of a

file or a path, but does not contain the methods

for reading/writing data from/to a file.

� In order to perform I/O, you need to create

objects using appropriate Java I/O classes. objects using appropriate Java I/O classes.

� The objects contain the methods for

reading/writing data from/to a file.

� This section introduces how to read/write

strings and numeric values from/to a text file

using the Scanner and PrintWriter classes.

Text I/O

Writing Data Using PrintWriter

� The java.io.PrintWriter class can be used to

write data to a text file.

� First, you have to create a PrintWriter object for

a text file as follows:

PrintWriter output = new PrintWriter(filename); PrintWriter output = new PrintWriter(filename);

� Then, you can invoke the print, println, and

printf methods on the PrintWriter object to write

data to a file.

Text I/O

PrintWriter Methods

� +PrintWriter(filename: String)
– Creates a PrintWriter object for the specified file.

� +print(s: String): void
– Writes a string.

� +print(c: char): void
– Writes a character.

+print(cArray: char[]): void� +print(cArray: char[]): void
– Writes an array of character.

� +print(i: int): void
– Writes an int value.

� +print(l: long): void
– Writes a long value.

� +print(f: float): void
– Writes a float value.

Text I/O

PrintWriter Methods

� +print(d: double): void
– Writes a double value.

� +print(b: boolean): void
– Writes a boolean value.

� Also contains the overloaded println & printf methods.

� A println method acts like a print method; additionally it prints a
line separator. The line separator string is defined by the system. line separator. The line separator string is defined by the system.
It is \r\n on Windows and \n on Unix.

Text I/O

WriteData.java

� This program gives an example that creates an

instance of PrintWriter and writes two lines to

the file "scores.txt".

� Each line consists of first name (a string),

middle name initial (a character), last name (a middle name initial (a character), last name (a

string), and score (an integer).

Text I/O

WriteData.java

Text I/O

WriteData.java

� Invoking the constructor new PrintWriter(String

filename) may throw an I/O exception. For

example if the filename exists.

� Java forces you to write the code to deal with

this type of exception. this type of exception.

� For now, simply declare throws Exception in

the method declaration

� You will learn how to handle exceptions (run

time errors) later.

Text I/O

WriteData.java

� The content of scores.txt:

John T Smith 90

Eric K Jones 85

Reading Data Using Scanner

Text I/O

Reading Data Using Scanner

� The java.util.Scanner class is used to read

from a file

� To create a Scanner to read data from a file,

you have to use the java.io.File class to create

an instance of the File using the constructor an instance of the File using the constructor

new File(filename)

� Then use new Scanner (File) to create a

Scanner for the file as follows:

Scanner input = new Scanner(new File(filename));

Text I/O

Scanner Methods

� +Scanner(source: File)

– Creates a Scanner that produces values scanned from the
specified file.

� +close()

– Closes this scanner.

� +hasNext(): boolean� +hasNext(): boolean

– Returns true if this scanner has another token in its input.

� +next(): String

– Returns next token as a string.

� +nextByte(): byte

– Returns next token as a byte.

� +nextShort(): short

– Returns next token as a short.

Text I/O

Scanner Methods

� +nextInt(): int

– Returns next token as an int.

� +nextLong(): long

– Returns next token as a long.

� +nextFloat(): float

– Returns next token as a float.– Returns next token as a float.

� +nextDouble(): double

– Returns next token as a double.

� +useDelimiter(pattern: String): Scanner

– Sets this scanner’s delimiting pattern.

Text I/O

ReadData.java

Text I/O

ReadData.java

� Invoking the constructor new Scanner(File)

may throw an I/O exception. So the main

method declares throws Exception

� The output:� The output:

John T Smith 90

Eric K Jones 85

Text I/O

Reading Data Using Scanner

� By default, the delimiters for separating tokens

in a Scanner are whitespace.

� You can use the useDelimiter(String) method

to set a new pattern for delimiters.

Example: Replacing Text

Text I/O

Example: Replacing Text

� Write a class named ReplaceText that replaces

a string in a text file with a new string.

� The filename and strings are passed as

command-line arguments as follows:
java ReplaceText sourceFile targetFile oldString newStringjava ReplaceText sourceFile targetFile oldString newString

� For example, invoking
java ReplaceText PalindromeIgnoreNonAlphanumeric.java t.txt

StringBuffer StringBuilder

� Replace all the occurrences of StringBuffer by

StringBuilder in FormatString.java and saves

the new file in t.txt.

Text I/O

Example: Replacing Text

Text I/O

Example: Replacing Text

References

Text I/O

References

� Y. Daniel Liang, Introduction to Java

Programming, Sixth Edition,

Pearson Education, 2007. (Chapter 8)

The End

