22. Inheritance

Summer 2008
Instructor: Dr. Masoud Yaghini



Inheritance

Outline
-]

e Superclasses and Subclasses
e Using the super Keyworad

e Overriding Methods

e The Object Class

e References



Inheritance

Inheritance
-~

e Obiject-oriented programming allows you to
derive new classes from existing classes.

e [his is called inheritance.

e Inheritance is an important and powerful
concept in Java.

e In fact, every class you define in Java is
iInherited from an existing class, either explicitly
or implicitly.

e The classes you created in the preceding
chapters were all extended implicitly from the
java.lang.Object class.



Superclasses and Subclasses



Inheritance

Superclasses and Subclasses
<
e A class C1 extended from another class C2 is
called a subclass, and C2 is called a
supercilass.

e A superclass is also referred to as a
supertype, a parent class, or a base class

e A subclass is also referred to as a subtype, a
child class, an extended class, or a derived
class.

e A subclass inherits accessible data fields and
methods from its superclass, and may also add
new data fields and methods.



Inheritance

Superclasses and Subclasses
o

e Suppose you want to design the classes to model
geometric objects like circles and rectangles.

e (Geometric objects have many common properties such
as:
— color
— filled or unfilled
- Date created

e And behaviors:
-~ Can be drawn in a certain color
— filled or unfilled methods
— get and set methods
— getDateCreated()
— toString() method returns a string representation for the object



Inheritance

Superclasses and Subclasses
o/ /]

GeometricOhject
=colar: String The color of the object { default: white).
=fil1led: boolean Indecates whether the object s Blled with a color (defauls: fulse )
~dateCreated: java.util.Date The date when ihe object was created.
+LeometricObject() Creates a Geometnc et
+getlolar(): String Returns the color.
+setColor{color: String): woid Seis a new oolar,
+15Fi1led(}: boolean Returns the flled property,
+s5etFilled(filled: boalean): void Sets a new filled property.
+getDateCreated() : java.util.Date Returns the dateCreated,
+toString(): String Returns a string representation of this obyect
i |
Cirde Rectungle

=radius: double -width: double

- -height: double
+Circle()
+Circle(radius: double) +Rectangle()
+getRadius(): double +Rectangle(width: double, height: double)
+setRadivus{radius: double): void +getWidth(}: double
+getAreal): double +setWidthi{width: double): woid
+getPerimeter(): double +getHeight(): double
+getDiameter(): double +setHeightCheight: double): woid

+getAreal): double
+getPerimeter(): double




Inheritance

Superclasses and Subclasses
o

e The Circle class inherits all accessible data
fields and methods from the GeometricObject
class.

e In addition, it has a new data field, radius, and
its associated get and set methods.

e |t also contains the getArea(), getPerimeter(),
and getDiameter() methods for returning the
area, perimeter, and diameter of the circle.



Inheritance

GeometricObject.java
-

I package chapter09;
2
3 public class GeometricObject {
4 private String color = "white";
5 private boolean filled;
6 private java.util. Date dateCreated,;
7
8 /% Construct a default geometric object */
9 public GeometricObject() {
10 dateCreated = new java.util.Date();
11 }
12
13 /% Return color */
14 public String getColor() {
15 return color;
16 }
17
18 /*% Set a new color ¥/
19  public void setColor(String newColor) {
20 color = newColor;
21 }

22



Inheritance

GeometricObject.java
-

23 /%% Return filled. Since filled is boolean,

24 so, the get method name is isFilled */
25  public boolean isFilled() {

26 return filled;

27 ]

28

29  /** Set a new filled */

30  public void setFilled(boolean newFilled) {

3 filled = newFilled;

32 )

‘;

34 /% Get dateCreated */

3 public java.util.Date getDateCreated() {

3 return dateCreated;

3 J

‘;

3 /%% Return a string representation of this object */
40  public String toString() {

41 return ""created on "' + dateCreated + "\ncolor: " + color +
42 " and filled: "' + filled;

43 |



Inheritance

Circle.java
o/

1 package chapter09;
2
3 public class Circle extends GeometricObject {
4 private double radius;
5
6 public Circle() {
T
8
9  public Circle(double newRadius) {
10 radius = newRadius:
11 }
12
13 /%% Return radius */
14 public double getRadius() {
15 return radius;
16 }
17
18  /**%Set a new radius */
19 public void setRadius(double newRadius) {
20 radius = newRadius;
21 }

22



Inheritance

Circle.java
o/

23 /% Return area */

24 public double getArea() {

25 return radius * radius * Math.PI;
26 }

27

28 /*% Return diameter */

29 public double getDiameter() {

30 return 2 * radius;

31 )

32

33 /%% Return perimeter */

34  public double getPerimeter() {

35 return 2 * radius * Math.PI;

36 }

37

38  /*% Print the circle info */

39  public void printCircle() {

40 System.out.println(""The circle is created " + getDateCreated() +
41 " and the radius is " + radius);
42 }

=
I



Inheritance

Rectangle.java
o —————/—////]

| package chapter09;

2

3 public class Rectangle extends GeometricObject {
4 private double width;

5  private double height;

6

7 public Rectangle() {

8

9
10 public Rectangle(double newWidth, double newHeight) {
11 width = newWidth;
12 height = newHeight;
13 }
14
15 /** Return width */
16 public double getWidth() {
17 return width;
18 }
19

20 /*% Set a new width */
21 public void setWidth(double newWidth) {
22 width = newWidth;



Inheritance

Rectangle.java
o —————/—////]

23 ]

24

25  /*% Return height */

26 public double getHeight() {

27 return height;

28 }

29

30 /%% Set a new height */

31 public void setHeight(double newHeight) {
32 height = newHeight;

33 }

34

35 /%% Return area */

36 public double getArea() {

37 return width * height;

38 }

39

40 /*% Return perimeter %/

41 public double getPerimeter() {
42 return 2 * (width + height);
43 }

44}



Inheritance

Superclasses and Subclasses
o

e The classes Circle and Rectangle extend the
GeometricObject class.

e The reserved word extends tells the compiler
that these classes extend the GeometricObject
class, thus inheriting the methods getColor,
setColor, isFilled, setFilled, and toString.



Inheritance

TestCircleRectangle.java
-

| package chapter09;
2
3 public class TestCircleRectangle {
4 public static void main(String[] args) {
5 Circle circle = new Circle(1);
6 System.out.println("" A circle " + circle.toString()):
7 System.out.println(circle.getRadius());
8 System.out.println(" The radius is " + circle.getRadius());
9 System.out.println(" The area is "' + circle.getArea());
10 System.out.println(" The diameter is " + circle.getDiameter());
11
12 Rectangle rectangle = new Rectangle(2, 4);
13 System.out.println(""\nA rectanlge " + rectangle.toString());
14 System.out.println(" The area is " + rectangle.getArea());
15 System.out.println(" The perimeter is "' +
16 rectangle.getPerimeter());
17 ]

18 )



Inheritance

TestCircleRectangle.java
o/

e QOutput:
A circle created on Tue Sep 30 22:55:31 IRST 2008
color: white and filled: false
1.0
The radius is 1.0
The area is 3.141592653589793
The diameteris 2.0

A rectangle created on Tue Sep 30 22:55:32 IRST 2008
color: white and filled: false

The area is 8.0

The perimeteris 12.0



Inheritance

Superclasses and Subclasses
S —

e Contrary to the conventional interpretation, a
subclass is not a subset of its superclass.

e In fact, a subclass usually contains more
iInformation and functions than its superclass.



Inheritance

Superclasses and Subclasses
S —

e Private data fields and methods in a superclass
are not accessible outside of the class.

e Therefore, they are not inherited in a subclass.



Using the super Keyword



Inheritance

Using the super Keyword
o/ /]
e A constructor is used to construct an instance
of a class.

e Unlike properties and methods, a superclass's
constructors are not inherited in the subclass.

e They can only be invoked from the subclasses'
constructors, using the keyword super.

e If the keyword super is not explicitly used, the
superclass's no-arg constructor is automatically
iInvoked.



Inheritance
Using the super Keyword
|
e The keyword super refers to the superclass of
the class in which super appears.

e |t can be used in two ways:
— To call a superclass constructor.
— To call a superclass method.



Inheritance

Calling Superclass Constructors
-

e The syntax to call a superclass constructor is:
super()
super(parameters);

e The statement super() invokes the no-arg constructor
of its superclass,

e The statement super(arguments) invokes the
superclass constructor that matches the arguments.

e The statement super() or super(arguments) must
appear in the first line of the subclass constructor and
IS the only way to invoke a superclass constructor.



Inheritance

Using the super Keyword

e A constructor may invoke an overloaded constructor or
Its superclass's constructor.

e If neither of them is invoked explicitly, the compiler puts
super() as the first statement in the constructor.

e For example:

public A() { is equivalent to public A() {
} = super();
public A(double d) { . _ public A(double d} {
// some statements 5 equivalent to super{);
} ™ // some statements
}




Inheritance

Using the super Keyword
— —

e You must use the keyword super to call the
superclass constructor.

e Invoking a superclass constructor's name in a
subclass causes a syntax error.



Inheritance

Constructor Chaining

e In any case, constructing an instance of a class
iInvokes the constructors of all the superclasses

along the inheritance chain.

e A superclass's constructor is called before the
subclass's constructor.

e This is called constructor chaining.



Inheritance

Faculty.java
@« ]

1 package chapter09:;
2
3 public class Faculty extends Employee {
4 public static void main(String[] args) {
5 new Faculty();
6 }
?
8 public Faculty() {
9 System.out.println(''(3) Faculty's no-arg constructor is invoked');
10 }
11}
12

13 class Employee extends Person {

14 public Employee() {

15 System.out.println(''(2) Employee's no-arg constructor is invoked');
16 }

17 '}

19 class Person |

20 public Person() {

21 System.out.println("'(1) Person's no-arg constructor is invoked");
22 }

23 }



Inheritance

Faculty.java
@« ]

e [he output:
(1) Person's no-arg constructor is invoked
(2) Employee's no-arg constructor is invoked
(3) Faculty's no-arg constructor is invoked he output:



Inheritance

Faculty.java
@« ]

1 package chapter09:;
2
3 public class Faculty extends Employee |
4 public static void main(String|[] args) {
3 new Faculty();
6 }
.
8  public Faculty() {
9 super();
10 System.out.println("'(3) Faculty's no-arg constructor is invoked");
11 }
12 }
13
14 class Employee extends Person {
15 public Employee() {
16 System.out.println("'(2) Employee's no-arg constructor is invoked");
17 }
18}
19
20 class Person |
21 public Person() {
22 System.out.println("'( 1) Person's no-arg constructor is invoked");
|
}

i R S T
Tl |

=



Inheritance

Constructor Chaining
o/

e If a class is designed to be extended, it is

better to provide a no-arg constructor to avoid
programming errors.

e Find out the errors in the program:
public class Apple extends Fruit {
}
class Fruit {
public Fruit(String name) {
System.out.printin("Fruit's constructor is invoked");

}



Inheritance

Constructor Chaining
o/

e Since no constructor is explicitly defined in
Apple, Apple's default no-arg constructor is

declared implicitly.

e Since Apple is a subclass of Fruit, Apple's
default constructor automatically invokes Fruit's
no-arg constructor.

e However, Fruit does not have a no-arg
constructor because Fruit has an explicit
constructor defined.

e Therefore, the program cannot be compiled.



Inheritance

Calling Superclass Methods
-

e The keyword super can also be used to
reference a method in the superclass. The
syntax is like this:

super.method(parameters);
e You could rewrite the printCircle() method in
the Circle class as follows:

public void printCircle() {

System.out.printin("The circle is created " +
super.getDateCreated() + " and the radius is " + radius);



Overriding Methods



Inheritance

Overriding Methods
-

e A subclass inherits methods from a superclass.

e Sometimes it is necessary for the subclass to
modify the implementation of a method defined
in the superclass.

e This is referred to as method overriding.



Inheritance

Overriding Methods
-

e The toString method in the GeometricObject class
returns the string representation for a geometric object.

e This method can be overridden to return the string
representation for a circle.

e To override it, add the following new method in
Circle.java:
public class Circle extends GeometricObiject {
// Other methods are omitted
/** Override the toString method defined in GeometricObject */
public String toString() {
return super.toString() + "\nradius is " + radius;



Inheritance

Overriding Methods
< 0]
e An instance of Circle can not invoke the
toString method defined in the
GeometricObject class.

e Because toString() in GeometricObject has
been overridden in Circle.



Inheritance

Overriding Methods
< 0]
e An instance method can be overridden only if it
IS accessible.

e Thus a private method cannot be overridden,
because it Is not accessible outside Its own
class.

e If a method defined in a subclass is private in
its superclass, the two methods are completely
unrelated.



Inheritance

Overriding Methods
<
e Like an instance method, a static method can

be inherited.

e However, a static method cannot be
overridden.

e If a static method defined in the superclass is
redefined in a subclass, the method defined in
the superclass is hidden.



Inheritance

Overriding vs. Overloading
|
e Overloading a method is a way to provide more
than one method with the same name but with

different signatures to distinguish them.

e [o override a method, the method must be
defined in the subclass using the same
signhature and same return type as in its
superclass.



Inheritance

Overriding vs. Overloading

e In(a), the method p(int i) in class A overrides the same method
defined in class B. However, in (b), the method p(double i) in class
A and the method p(int i) in class B are two overloaded methods.
The method p(int i) in class B is inherited in A.

public class Test {
public static void main(String[] args) {
A a = new A();
a.p(lo);

]
3

class B {
public void p{int 1) {

}
¥

class A extendi B 4
=t L0 LY o ||.I|'| LNe methnod

public vu1d p{int 1) {
System.out.printin{i);

1
}

public class Test {
public static void main{String[] args) {
A a = new A();:
a.p(l0);
}
}

class B {
public void p{int 1) {

}
}

class A extends @ {
hod overloads the method

puh11: ?u1d.p{dnuhln 1) {
System.out.printinii);

}
}

(] 1]




Inheritance

Overriding vs. Overloading
o/

e When you run the Test class in (a), a.p(10)
iInvokes the p(int i) method defined in class A,
so the program displays 10.

e When you run the Test class in (b), a.p(10)
iInvokes the p(int i) method defined in class B,
so nothing is printed.



The Object Class



Inheritance

The Object Class
o

e If no inheritance is specified when a class is
defined, the superclass of the class is
java.lang.Object class by default.

e For example, the following two class
declarations are the same:

public class Circle extends Object {

}

'puh1ic class Circle {

A Equivalent
}

e It is important to be familiar with the methods
provided by the Object class so that you can
use them in your classes.



Inheritance
The toString() method
< 0]
e The signature of the toString() method is

public String toString()

e The toString() method returns a string
representation of the object.

e The default implementation returns a string
consisting of a class name of which the object
IS an instance, the at sign (@), and a number
representing this object.



Inheritance

The toString() method
-« ]

e For example:
Loan loan = new Loan();
System.out.println(loan.toString());

e The code displays something like
Loan@15037¢e5 .

e This message is not very helpful or informative.

e Usually you should override the toString
method.



References



Inheritance

References
a ]

e Y. Daniel Liang, Introduction to Java

Programming, Sixth Edition,
Pearson Education, 2007. (Chapter 9)







