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e The inheritance relationship enables a
subclass to inherit features from its superclass
with additional new features.

e A subclass is a specialization of its superclass

e Every instance of a subclass is an instance of
its superclass, but not vice versa.

e For example, every circle is an object, but not
every object Is a circle.

e Therefore, you can always pass an instance of
a subclass to a parameter of its superclass

type.
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PolymorphismDemo.java
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| public class PolymorphismDemo {

2 public static void main(String[] args) {
3 m(new GraduateStudent());

4 m(new Student());

5 m(new Person());

6 m(new Object());

7

8

9 public static void m(Object x) {
10 System.out.println(x.toString());
11 }
12 )
13
14 class GraduateStudent extends Student {
15 }
16

17 class Student extends Person {
18  public String toString() {

19 return ""Student'';

20 }

21 |}



Polymorphism

PolymorphismDemo.java
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29

23 class Person extends Object {
24 public String toString() {
25 return ""Person'';

26 ]

27 '}

e The output?
Student
Student
Person
java.lang.Object@10b30a7
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e WWhen the method m(Object x) is executed, the
argument x's toString method is invoked.

e X may be an instance of GraduateStudent,
Student, Person, or Object.

e Classes GraduateStudent, Student, Person,
and Object have their own implementations of
the toString method.

e Which implementation is used will be
determined dynamically by the Java Virtual
Machine at runtime.
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e This capabillity is known as dynamic binding.

It is also known as polymorphism (from a
Greek word meaning "many forms") because
one method has many implementations.

e Polymorphism is a feature that an object of a
subtype can be used wherever its supertype
value is required.
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e Dynamic binding works as follows: Suppose an object
0 is an instance of classes C,, C,, ..., C, 4, and C,

e Where C, is a subclass of C,, C, is a subclass of Cj,
...,and C__, is a subclass of C,, as shown below:

. If 015 an instance of Cq, 0 15 also an
java. lang.0Object instance of Cy, Cq, ..., Cy_1. and C,

e Thatis, C, is the most general class, and C, is the
most specific class.

e In Java, C, is the Object class.
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e If o invokes a method p, the JVM searches the
implementation for the method pin C,, C,, ...,
C,.1, and C,, in this order, until it is found.

e Once an implementation is found, the search
stops and the first-found implementation is
invoked.

e For example, when m(new GraduateStudent())
Is invoked, the toString method defined in the
Student class is used.
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Generic Programming
.

e Polymorphism allows methods to be used generically
for a wide range of object arguments.

e This is known as generic programming. If a method's
parameter type is a superclass (e.g., Object), you may
pass an object to this method of any of the parameter's
subclasses (e.g., Student or String).

e When an object (e.g., a Student object or a String
object) is used in the method, the particular
implementation of the method of the object invoked
(e.g., toString) is determined dynamically.



Casting Objects and the
instanceof Operator
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Casting Objects

e You have already used the casting operator to convert
variables of one primitive type to another.

e (Casting can also be used to convert an object of one
class type to another within an inheritance hierarchy.

e In the preceding section, the statement
m(new Student());

— assigns the object new Student() to a parameter of the Object
type.

e This statement is equivalent to
Object o = new Student(); / Implicit casting m(o);
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Casting Objects
S —

e The statement Object o = new Student(), known as
implicit casting, is legal because an instance of
Student is automatically an instance of Object.

e Suppose you want to assign the object reference o to a
variable of the Student type using the following
statement:

Student b = 0;

e A compilation error would occur. Why does the
statement Object o = new Student() work and the
statement Student b = o0 doesn't?

e Because a Student object is always an instance of
Object, but an Object is not necessarily an instance of
Student.
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Casting Objects
S —

e Even though you can see that o is really a
Student object, the compiler is not clever
enough to know it.

e To tell the compiler that o is a Student object,
use an explicit casting.

e Enclose the target object type in parentheses
and place it before the object to be cast, as
follows:

Student b = (Student)o; // Explicit casting
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Casting Objects

o Upcasting:

- When casting an instance of a subclass to a
variable of a superclass

— ltis possible, because an instance of a subclass is
always an instance of its superclass.

e Downcasting:

- When casting an instance of a superclass to a
variable of its subclass

— Explicit casting must be used to confirm your

intention to the compiler with the (SubclassName)
cast notation.
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e For the downcasting to be successful, you must make
sure that the object to be cast is an instance of the
subclass.

e If the superclass object is not an instance of the
subclass, a runtime ClassCastException occurs.

e For example, if an object is not an instance of Student,
it cannot be cast into a variable of Student.

e Therefore, to ensure that the object is an instance of
another object before attempting a casting.

e This can be accomplished by using the instanceof
operator.
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e Consider the following code:

Object myObject = new Circle();

... /I Some lines of code

/** Perform casting if myObiject is an instance of Circle */
if (myQObject instanceof Circle) {

System.out.printin("The circle diameter is " +
((Circle)myObiject).getDiameter());
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Casting Objects
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e [0 help understand casting, you may also
consider the analogy of fruit, apple, and
orange, with the Fruit class as the superclass
for Apple and Orange.

e An apple is a fruit, so you can always safely
assign an instance of Apple to a variable for
Fruit.

e However, a fruit is not necessarily an apple, so
you have to use explicit casting to assign an
iInstance of Fruit to a variable of Apple.
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Casting Objects
S —

e why casting is necessary?
e Variable myQObject is declared Objecit.

e The declared type decides which method to match at
compile time. Using myQObject.getDiameter() would
cause a compilation error because the Object class
does not have the getDiameter method.

e The compiler cannot find a match for
myObject.getDiameter().

e ltis necessary to cast myObiject into the Circle type to
tell the compiler that myQObject is also an instance of
Circle.
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Casting Objects
S —

e Why not declare myObiject as a Circle type in
the first place?

e 10 enable generic programming, it is a good
practice to declare a variable with a supertype,
which can accept a value of any subtype.
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| package chapter09:;
-
3 public class TestPolymorphismCasting |
4  /F*F Main method %/
5 public static void main(String[] args) |
6 // Declare and initialize two objects
7 Object object] = new Circle(1);
8 Object object2 = new Rectangle(1, 1):
9

10 // Display circle and rectanlge

[ displayObject(object1);

12 displayObject(object2);

13 |

=
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15  /#% A method for displaying an object */
16 public static void displayObject(Object object) {

17 if (object instanceof Circle) {

18 System.out.println("" The circle area is " +

19 ((Circle)object).getArea());

20 System.out.println(" The circle diameter is " +
21 ((Circle)object).getDiameter());

22 }

23 else if (object instanceof Rectangle) {

24 System.out.println(" The rectangle area is " +
25 ((Rectangle)object).getArea());

26 }

77 }

28 )
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TestPolymorphismCasting.java
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e The program uses implicit casting to assign a

Circle object to object1 and a Rectangle object
to object2, and then invokes the displayObiject
method to display the information on these
objects.

e Casting can only be done when the source
object is an instance of the target class.

e The program uses the instanceof operator to
ensure that the source object is an instance of
the target class before performing a casting
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TestPolymorphismCasting.java
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e The object member access operator (.)
precedes the casting operator.

e Use parentheses to ensure that casting is done
before the . operator, as in

((Circle)object).getArea();
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The ArrayList Class
— —

e You can create an array to store objects.

e But the array's size is fixed once the array is
created.

e Java provides the ArrayList class that can be
used to store an unlimited number of objects.

e Arraylistis a class of java.util.
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e +Arraylist()

— Creates an empty list.
e +add(o: Object) : void

- Appends a new element o at the end of this list.
e +add(index: int, o: Object) : void

- Adds a new element o at the specified index in this
list.

e +clear(): void
- Removes all the elements from this list.

e +contains(o: Object): boolean
-~ Returns true if this list contains the element o.
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Some methods in ArrayList
o

e +get(index: int) : Object

— Returns the element from this list at the specified
index.

e +indexOf(o: Object) : int

- Returns the index of the first matching element in
this list.

e +iSEmpty(): boolean
— Returns true if this list contains no elements.
e +lastindexOf(o: Object) : int

- Returns the index of the last matching element in
this list.
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e +remove(o: Object): boolean

- Removes the element o from this list.
e +size(): int

— Returns the number of elements in this list.
e +remove(index: int) : Object

- Removes the element at the specified index.
e +set(index: int, 0: Object) : Object

— Sets the element at the specified index.
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TestArraylList.java
< / |/

package chapter(09;

1
2
3 public class TestArrayList {

4 public static void main(String[] args) {

5 // Create a list to store cities

6 java.util. ArrayList cityList = new java.util. ArrayList();
7
8

/W Add some cities in the list

9 cityList.add("' London™);
10 // cityList now contains [ London]
11 cityList.add(""New York");
12 A cityList now contains [ London, New York]
13 cityList.add("" Paris");
14 A cityList now contains [ London, New York, Paris]
15 cityList.add(""Toronto'");
16 // cityList now contains [ London, New York, Paris, Toronto]
17 cityList.add(""Hong Kong'"');
18 // contains [London, New York, Paris, Toronto, Hong Kong]
19 cityList.add(""Singapore™);
20 // contains [London, New York, Paris, Toronto,
21 /4 Hong Kong, Singapore]

22
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23 System.out.println("'List size? " + cityList.size());

24 System.out.println("'Is Toronto in the list? " +

25 cityList.contains("' Toronto'));

26 System.out.println("' The location of New York in the list? '
27 + cityList.index Of(""New York'));

28 System.out.println("'Is the list empty? " +

29 cityList.isEmpty()); // Print false

30

31 // Insert a new city at index 2

32 cityList.add(2, "Beijing");

33 // contains [ London, New York, Beijing, Paris, Toronto,
34 7 Hong Kong, Singapore|

35

30 // Remove a city from the list

37 cityListremove('' " Toronto');

38 // contains [London, New York, Beijing, Paris,

39 / Hong Kong, Singapore]

40

41 // Remove a city at index 1

42 cityList.remove(1);

43 // contains [London, Beijing, Paris, Hong Kong, Singapore|
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45 // Display London Beijing Paris Hong Kong Singapore
46 for (int i = 0; i < cityList.size(); i++)

47 System.out.print(cityList.get(i) + " '');

48 System.out.println();

49

50 // Create a list to store two circles

51 java.util. ArrayList list = new java.util. ArrayList();
52

53 / Add two circles

54 list.add(new Circle(2));

55 list.add(new Circle(3));

56

57 // Display the area of the first circle in the list

58 System.out.println(''The area of the circle? " +
59 ((Circle)list.get(0)).getArea());

60 }

61 )
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e You will get a compilation warning “unchecked
operation” Ignore it.

e [he output:
List size? 6
Is Toronto in the list? true
The location of New York in the list? 1
Is the list empty? false
London Beijing Paris Hong Kong Singapore
The area of the circle? 12.566370614359172
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— —

e Differences and Similarity between Arrays and
ArrayList:
- Once an array is created, its size is fixed.

— You can access an array element using the square
bracket notation (e.g., a[index]).

- When an ArraylList is created, its size is 0.

— You cannot use the get and set method if the
element is not in the list.

— It is easy to add, insert, and remove elements in a
list, but it is rather complex to add, insert, and
remove elements in an array.
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The ArrayList Class

|
e Differences and Similarity between Arrays and ArrayList:

Array ArrayList
Creating an Object[] a = new ArrayList list = new
array/ArrayList Object[10] ArrayList()
Accessing an element  a [index] list.get {index)
Updating an element a [index] = list.set{index,
"London" ; "London") ;
Returning size a.length list.=size()
Adding a new element list.add (" London")
Inserting a new list.add({index, "London")
element
Removing an element list.remove (index)
Removing an element list.remove (Object)

Removing all elements list.clear ()



The protected Data and Methods



Polymorphism

The protected Data and Methods
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e The protected modifier can be applied on data
and methods in a class.

e A protected data or a protected method in a
public class can be accessed by any class Iin

the same package or its subclasses, even if

the subclasses are in a different package.

e The modifiers private, protected, and public are
known as visibility or accessibility modifiers
because they specify how class and class
members are accessed.
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e The visibility of these modifiers increases in this order:

Visibility increases

>
private, none (if no modifier is used ), protected, public

e Summarizing the accessibility of the members in a

class
Modifier on Accessed from Accessed from Accessed from Accessed from
members ina the same class the same a subclass a different
class package package
public v v v v
protected s s s -
(default) " s _ _
private J - _ _
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Visibility modifiers
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package pl;

public class C1 {
public int x;
protected int y;
int Z:
privateé int u;

protected void m() {
]

public class C2 {
€l o = new C10);
Cdn ACCess O.X;
can acLess 0.Y¥,
can dCCess Oo.X,
canmdt ACCess O.u;

can invoke o.m{);

Ealy

package pZ;

public class C3
extends C1 {
AN ACCESS X
Can access y;
£an access z;
Cannot AcCess u:

can invoke mi);

public class C4

can afcess X7
Can atcess Y
canmot access
canmot access

extends Cl {

£
us

can invoke m();

public class €5 {
Cl o0 = new C1();
Can ACCeSS 0.X]
cannot access o0.y;
cannot AcCcess 0.Z;
cannot ACCESS O.u:

cannot invoke o.m();
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A Subclass Cannot Weaken the Accessibility
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e A subclass may override a protected method in
Its superclass and change its visibility to public.

e However, a subclass cannot weaken the
accessibility of a method defined in the
superclass.

e For example, if a method is defined as public in
the superclass, it must be defined as public in
the subclass.



The final Classes, Methods, and
Variables



Polymorphism

The final Classes, Methods, and Variables
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e The final class cannot be extended:
final class Math {

}

e The final variable Is a constant:
final static double PI = 3.14159;

e The final method cannot be
overridden by its subclasses.
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The final Classes, Methods, and Variables
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e The modifiers are used on classes and class
members (data and methods), except that the
final modifier can also be used on local
variables in a method.

e A final local variable is a constant inside a
method.
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The this Keyword
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e A property (data field) name is often used as
the parameter name in a set method for the
property.

e In this case, you need to reference the hidden
property name in the method in order to set a
new value to it.

e A hidden static variable can be accessed
simply by using the ClassName.StaticVariable
reference.

e A hidden instance variable can be accessed by
using the keyword this.
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The this Keyword
o

e The keyword this serves as the proxy for the
object that invokes the method.

class Foo { Suppose that f1 and f2 are two objects of Foo.
int 1 = 5;
static double k = (; Invoking fl.setI({10) is to execute

L »fl.i = 10, where this is replaced by fl
void setl{int 93—

this.i = 1; Invoking f2.setI{45) is to execute
} o — Tt—»=f2.1 = 45, where this is replaced by f2
static void setK(double k) {
Foo.k = k;
}
1
(a) (k]

e The line this.i =i means "assign the value of parameter
| to the data field i of the calling object."



Polymorphism

The this Keyword

e The keyword this can also be used inside a constructor
to invoke another constructor of the same class.

public class Circle {

}

private double radius;
-
.H"'ﬂ-ﬂ-r

public_Citcle(double radius) {
this.radius = radius;

} S — » Lhis must be explicitly used to reference the data
field radius of the object being constructed
public Circle() {
this(1.0);
y T

= this i5 used to invoke another constructor

public double getArea() {
return this.radius * this.radius * Math.PI;

} "
Y Y
Every instance variable belongs to an instance represented by this,
which 1s normally omitted
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Getting Input from the Console
S —

e You can obtain input from an input dialog box
using the JOptionPane.showlnputDialog
method.

e Alternatively, you may obtain input from the
console.

e Java uses System.out to refer to the standard
output device, and System.in to the standard
input device.

e By default the output device is the console, and
the input device is the keyboard.
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Getting Input from the Console
S —

e To perform console output, you simply use the
printin method to display a primitive value or a
string to the console.

e Console input is not directly supported in Java,
but you can use the Scanner class to create an
object to read input from System.in, as follows:

Scanner scanner = new Scanner(System.in);
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Getting Input from the Console
S —

e A Scanner object contains the following
methods for reading an input:

- next(): reading a string. A string is delimited by
spaces.

- nextByte(): reading an integer of the byte type.

— nextShort(): reading an integer of the short type.

- nextInt(): reading an integer of the int type.

- nextLong(): reading an integer of the long type.

— nextFloat(): reading a number of the float type.

- nextDouble(): reading a number of the double type.
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Getting Input from the Console
S —

e For example, the following statements prompt
the user to enter a double value from the
console.

System.out.print("Enter a double value: ");
Scanner scanner = new Scanner(System.in);
double d = scanner.nextDouble();
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| package chapter(2;
2
3 import java.util.Scanner; // Scanner is in java.uril
4
5 public class TestScanner |
6 public static void main(String args[]) |
7 // Create a Scanner
8 Scanner scanner = new Scanner( System.in);
9
10 // Prompt the user to enter an integer
11 System.out.print(""Enter an integer: '');
12 int intValue = scanner.nex tint();
13 System,out.println{'"You entered the integer " + intValue);
14
15 /! Prompt the user to enter a double value
16 System.out.print(""Enter a double value: ");
17 double doubleValue = scanner.nextDouble();
18 System,out.println{""You entered the double value "
19 + doubleValue);
20
21 // Prompt the user to enter a string
22 System.out.print(""Enter a string without space: "');
23 String string = scanner.next( );
24 System.out.println{" You entered the string " + string);
25 }
26 |
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