23. Polymorphism

Summer 2008
Instructor: Dr. Masoud Yaghini

Polymorphism

Outline
-]

e Polymorphism, Dynamic Binding, and Generic
Programming

Casting Objects and the instanceof Operator
The ArrayList Class

ne protected Data and Methods

ne final Classes, Methods, and Variables
ne this Keyword

Getting Input from the Console

References

Polymorphism, Dynamic Binding,
and Generic Programming

Polymorphism

Polymorphism
o —————/—////]

e The inheritance relationship enables a
subclass to inherit features from its superclass
with additional new features.

e A subclass is a specialization of its superclass

e Every instance of a subclass is an instance of
its superclass, but not vice versa.

e For example, every circle is an object, but not
every object Is a circle.

e Therefore, you can always pass an instance of
a subclass to a parameter of its superclass

type.

Polymorphism

PolymorphismDemo.java
-« /]

| public class PolymorphismDemo {

2 public static void main(String[] args) {
3 m(new GraduateStudent());

4 m(new Student());

5 m(new Person());

6 m(new Object());

7

8

9 public static void m(Object x) {
10 System.out.println(x.toString());
11 }
12)
13
14 class GraduateStudent extends Student {
15 }
16

17 class Student extends Person {
18 public String toString() {

19 return ""Student'';

20 }

21 |}

Polymorphism

PolymorphismDemo.java
-« /]

29

23 class Person extends Object {
24 public String toString() {
25 return ""Person'';

26]

27 '}

e The output?
Student
Student
Person
java.lang.Object@10b30a7

Polymorphism

Polymorphism
. 000000000000
e WWhen the method m(Object x) is executed, the
argument x's toString method is invoked.

e X may be an instance of GraduateStudent,
Student, Person, or Object.

e Classes GraduateStudent, Student, Person,
and Object have their own implementations of
the toString method.

e Which implementation is used will be
determined dynamically by the Java Virtual
Machine at runtime.

Polymorphism

Polymorphism
|
e This capabillity is known as dynamic binding.

It is also known as polymorphism (from a
Greek word meaning "many forms") because
one method has many implementations.

e Polymorphism is a feature that an object of a
subtype can be used wherever its supertype
value is required.

Polymorphism

Polymorphism

e Dynamic binding works as follows: Suppose an object
0 is an instance of classes C,, C,, ..., C, 4, and C,

e Where C, is a subclass of C,, C, is a subclass of Cj,
...,and C__, is a subclass of C,, as shown below:

. If 015 an instance of Cq, 0 15 also an
java. lang.0Object instance of Cy, Cq, ..., Cy_1. and C,

e Thatis, C, is the most general class, and C, is the
most specific class.

e In Java, C, is the Object class.

Polymorphism

Polymorphism
. 000000000000
e If o invokes a method p, the JVM searches the
implementation for the method pin C,, C,, ...,
C,.1, and C,, in this order, until it is found.

e Once an implementation is found, the search
stops and the first-found implementation is
invoked.

e For example, when m(new GraduateStudent())
Is invoked, the toString method defined in the
Student class is used.

Polymorphism

Generic Programming
.

e Polymorphism allows methods to be used generically
for a wide range of object arguments.

e This is known as generic programming. If a method's
parameter type is a superclass (e.g., Object), you may
pass an object to this method of any of the parameter's
subclasses (e.g., Student or String).

e When an object (e.g., a Student object or a String
object) is used in the method, the particular
implementation of the method of the object invoked
(e.g., toString) is determined dynamically.

Casting Objects and the
instanceof Operator

Polymorphism

Casting Objects

e You have already used the casting operator to convert
variables of one primitive type to another.

e (Casting can also be used to convert an object of one
class type to another within an inheritance hierarchy.

e In the preceding section, the statement
m(new Student());

— assigns the object new Student() to a parameter of the Object
type.

e This statement is equivalent to
Object o = new Student(); / Implicit casting m(o);

Polymorphism

Casting Objects
S —

e The statement Object o = new Student(), known as
implicit casting, is legal because an instance of
Student is automatically an instance of Object.

e Suppose you want to assign the object reference o to a
variable of the Student type using the following
statement:

Student b = 0;

e A compilation error would occur. Why does the
statement Object o = new Student() work and the
statement Student b = o0 doesn't?

e Because a Student object is always an instance of
Object, but an Object is not necessarily an instance of
Student.

Polymorphism

Casting Objects
S —

e Even though you can see that o is really a
Student object, the compiler is not clever
enough to know it.

e To tell the compiler that o is a Student object,
use an explicit casting.

e Enclose the target object type in parentheses
and place it before the object to be cast, as
follows:

Student b = (Student)o; // Explicit casting

Polymorphism

Casting Objects

o Upcasting:

- When casting an instance of a subclass to a
variable of a superclass

— ltis possible, because an instance of a subclass is
always an instance of its superclass.

e Downcasting:

- When casting an instance of a superclass to a
variable of its subclass

— Explicit casting must be used to confirm your

intention to the compiler with the (SubclassName)
cast notation.

Polymorphism

instanceof Operator
o

e For the downcasting to be successful, you must make
sure that the object to be cast is an instance of the
subclass.

e If the superclass object is not an instance of the
subclass, a runtime ClassCastException occurs.

e For example, if an object is not an instance of Student,
it cannot be cast into a variable of Student.

e Therefore, to ensure that the object is an instance of
another object before attempting a casting.

e This can be accomplished by using the instanceof
operator.

Polymorphism

instanceof Operator
S —

e Consider the following code:

Object myObject = new Circle();

... /I Some lines of code

/** Perform casting if myObiject is an instance of Circle */
if (myQObject instanceof Circle) {

System.out.printin("The circle diameter is " +
((Circle)myObiject).getDiameter());

Polymorphism

Casting Objects
|
e [0 help understand casting, you may also
consider the analogy of fruit, apple, and
orange, with the Fruit class as the superclass
for Apple and Orange.

e An apple is a fruit, so you can always safely
assign an instance of Apple to a variable for
Fruit.

e However, a fruit is not necessarily an apple, so
you have to use explicit casting to assign an
iInstance of Fruit to a variable of Apple.

Polymorphism

Casting Objects
S —

e why casting is necessary?
e Variable myQObject is declared Objecit.

e The declared type decides which method to match at
compile time. Using myQObject.getDiameter() would
cause a compilation error because the Object class
does not have the getDiameter method.

e The compiler cannot find a match for
myObject.getDiameter().

e ltis necessary to cast myObiject into the Circle type to
tell the compiler that myQObject is also an instance of
Circle.

Polymorphism

Casting Objects
S —

e Why not declare myObiject as a Circle type in
the first place?

e 10 enable generic programming, it is a good
practice to declare a variable with a supertype,
which can accept a value of any subtype.

Polymorphism

TestPolymorphismCasting.java
o/

| package chapter09:;
-
3 public class TestPolymorphismCasting |
4 /F*F Main method %/
5 public static void main(String[] args) |
6 // Declare and initialize two objects
7 Object object] = new Circle(1);
8 Object object2 = new Rectangle(1, 1):
9

10 // Display circle and rectanlge

[displayObject(object1);

12 displayObject(object2);

13 |

=

Polymorphism

TestPolymorphismCasting.java
. 000000000000
15 /#% A method for displaying an object */
16 public static void displayObject(Object object) {

17 if (object instanceof Circle) {

18 System.out.println("" The circle area is " +

19 ((Circle)object).getArea());

20 System.out.println(" The circle diameter is " +
21 ((Circle)object).getDiameter());

22 }

23 else if (object instanceof Rectangle) {

24 System.out.println(" The rectangle area is " +
25 ((Rectangle)object).getArea());

26 }

77 }

28)

Polymorphism

TestPolymorphismCasting.java
|
e The program uses implicit casting to assign a

Circle object to object1 and a Rectangle object
to object2, and then invokes the displayObiject
method to display the information on these
objects.

e Casting can only be done when the source
object is an instance of the target class.

e The program uses the instanceof operator to
ensure that the source object is an instance of
the target class before performing a casting

Polymorphism

TestPolymorphismCasting.java
o/

e The object member access operator (.)
precedes the casting operator.

e Use parentheses to ensure that casting is done
before the . operator, as in

((Circle)object).getArea();

The ArrayList Class

Polymorphism

The ArrayList Class
— —

e You can create an array to store objects.

e But the array's size is fixed once the array is
created.

e Java provides the ArrayList class that can be
used to store an unlimited number of objects.

e Arraylistis a class of java.util.

Polymorphism
Some methods in ArrayList
< 00000000/

e +Arraylist()

— Creates an empty list.
e +add(o: Object) : void

- Appends a new element o at the end of this list.
e +add(index: int, o: Object) : void

- Adds a new element o at the specified index in this
list.

e +clear(): void
- Removes all the elements from this list.

e +contains(o: Object): boolean
-~ Returns true if this list contains the element o.

Polymorphism

Some methods in ArrayList
o

e +get(index: int) : Object

— Returns the element from this list at the specified
index.

e +indexOf(o: Object) : int

- Returns the index of the first matching element in
this list.

e +iSEmpty(): boolean
— Returns true if this list contains no elements.
e +lastindexOf(o: Object) : int

- Returns the index of the last matching element in
this list.

Polymorphism
Some methods in ArrayList
< 000000000

e +remove(o: Object): boolean

- Removes the element o from this list.
e +size(): int

— Returns the number of elements in this list.
e +remove(index: int) : Object

- Removes the element at the specified index.
e +set(index: int, 0: Object) : Object

— Sets the element at the specified index.

Polymorphism

TestArraylList.java
< / |/

package chapter(09;

1
2
3 public class TestArrayList {

4 public static void main(String[] args) {

5 // Create a list to store cities

6 java.util. ArrayList cityList = new java.util. ArrayList();
7
8

/W Add some cities in the list

9 cityList.add("' London™);
10 // cityList now contains [London]
11 cityList.add(""New York");
12 A cityList now contains [London, New York]
13 cityList.add("" Paris");
14 A cityList now contains [London, New York, Paris]
15 cityList.add(""Toronto'");
16 // cityList now contains [London, New York, Paris, Toronto]
17 cityList.add(""Hong Kong'"');
18 // contains [London, New York, Paris, Toronto, Hong Kong]
19 cityList.add(""Singapore™);
20 // contains [London, New York, Paris, Toronto,
21 /4 Hong Kong, Singapore]

22

Polymorphism

TestArraylList.java
< / |/

23 System.out.println("'List size? " + cityList.size());

24 System.out.println("'Is Toronto in the list? " +

25 cityList.contains("' Toronto'));

26 System.out.println("' The location of New York in the list? '
27 + cityList.index Of(""New York'));

28 System.out.println("'Is the list empty? " +

29 cityList.isEmpty()); // Print false

30

31 // Insert a new city at index 2

32 cityList.add(2, "Beijing");

33 // contains [London, New York, Beijing, Paris, Toronto,
34 7 Hong Kong, Singapore|

35

30 // Remove a city from the list

37 cityListremove('' " Toronto');

38 // contains [London, New York, Beijing, Paris,

39 / Hong Kong, Singapore]

40

41 // Remove a city at index 1

42 cityList.remove(1);

43 // contains [London, Beijing, Paris, Hong Kong, Singapore|

Polymorphism

TestArraylList.java
< / |/

45 // Display London Beijing Paris Hong Kong Singapore
46 for (int i = 0; i < cityList.size(); i++)

47 System.out.print(cityList.get(i) + " '');

48 System.out.println();

49

50 // Create a list to store two circles

51 java.util. ArrayList list = new java.util. ArrayList();
52

53 / Add two circles

54 list.add(new Circle(2));

55 list.add(new Circle(3));

56

57 // Display the area of the first circle in the list

58 System.out.println(''The area of the circle? " +
59 ((Circle)list.get(0)).getArea());

60 }

61)

Polymorphism

TestArraylList.java
< / |/

e You will get a compilation warning “unchecked
operation” Ignore it.

e [he output:
List size? 6
Is Toronto in the list? true
The location of New York in the list? 1
Is the list empty? false
London Beijing Paris Hong Kong Singapore
The area of the circle? 12.566370614359172

Polymorphism

The ArrayList Class
— —

e Differences and Similarity between Arrays and
ArrayList:
- Once an array is created, its size is fixed.

— You can access an array element using the square
bracket notation (e.g., a[index]).

- When an ArraylList is created, its size is 0.

— You cannot use the get and set method if the
element is not in the list.

— It is easy to add, insert, and remove elements in a
list, but it is rather complex to add, insert, and
remove elements in an array.

Polymorphism

The ArrayList Class

|
e Differences and Similarity between Arrays and ArrayList:

Array ArrayList
Creating an Object[] a = new ArrayList list = new
array/ArrayList Object[10] ArrayList()
Accessing an element a [index] list.get {index)
Updating an element a [index] = list.set{index,
"London" ; "London") ;
Returning size a.length list.=size()
Adding a new element list.add (" London")
Inserting a new list.add({index, "London")
element
Removing an element list.remove (index)
Removing an element list.remove (Object)

Removing all elements list.clear ()

The protected Data and Methods

Polymorphism

The protected Data and Methods
< 0]
e The protected modifier can be applied on data
and methods in a class.

e A protected data or a protected method in a
public class can be accessed by any class Iin

the same package or its subclasses, even if

the subclasses are in a different package.

e The modifiers private, protected, and public are
known as visibility or accessibility modifiers
because they specify how class and class
members are accessed.

Polymorphism

Visibility modifiers
o/ /]

e The visibility of these modifiers increases in this order:

Visibility increases

>
private, none (if no modifier is used), protected, public

e Summarizing the accessibility of the members in a

class
Modifier on Accessed from Accessed from Accessed from Accessed from
members ina the same class the same a subclass a different
class package package
public v v v v
protected s s s -
(default) " s _ _
private J - _ _

Polymorphism

Visibility modifiers
-

package pl;

public class C1 {
public int x;
protected int y;
int Z:
privateé int u;

protected void m() {
]

public class C2 {
€l o = new C10);
Cdn ACCess O.X;
can acLess 0.Y¥,
can dCCess Oo.X,
canmdt ACCess O.u;

can invoke o.m{);

Ealy

package pZ;

public class C3
extends C1 {
AN ACCESS X
Can access y;
£an access z;
Cannot AcCess u:

can invoke mi);

public class C4

can afcess X7
Can atcess Y
canmot access
canmot access

extends Cl {

£
us

can invoke m();

public class €5 {
Cl o0 = new C1();
Can ACCeSS 0.X]
cannot access o0.y;
cannot AcCcess 0.Z;
cannot ACCESS O.u:

cannot invoke o.m();

Polymorphism

A Subclass Cannot Weaken the Accessibility
< 0]

e A subclass may override a protected method in
Its superclass and change its visibility to public.

e However, a subclass cannot weaken the
accessibility of a method defined in the
superclass.

e For example, if a method is defined as public in
the superclass, it must be defined as public in
the subclass.

The final Classes, Methods, and
Variables

Polymorphism

The final Classes, Methods, and Variables
<« 000000000]

e The final class cannot be extended:
final class Math {

}

e The final variable Is a constant:
final static double PI = 3.14159;

e The final method cannot be
overridden by its subclasses.

Polymorphism

The final Classes, Methods, and Variables
<« 000000000]

e The modifiers are used on classes and class
members (data and methods), except that the
final modifier can also be used on local
variables in a method.

e A final local variable is a constant inside a
method.

The this Keyword

Polymorphism

The this Keyword
o

e A property (data field) name is often used as
the parameter name in a set method for the
property.

e In this case, you need to reference the hidden
property name in the method in order to set a
new value to it.

e A hidden static variable can be accessed
simply by using the ClassName.StaticVariable
reference.

e A hidden instance variable can be accessed by
using the keyword this.

Polymorphism

The this Keyword
o

e The keyword this serves as the proxy for the
object that invokes the method.

class Foo { Suppose that f1 and f2 are two objects of Foo.
int 1 = 5;
static double k = (; Invoking fl.setI({10) is to execute

L »fl.i = 10, where this is replaced by fl
void setl{int 93—

this.i = 1; Invoking f2.setI{45) is to execute
} o — Tt—»=f2.1 = 45, where this is replaced by f2
static void setK(double k) {
Foo.k = k;
}
1
(a) (k]

e The line this.i =i means "assign the value of parameter
| to the data field i of the calling object."

Polymorphism

The this Keyword

e The keyword this can also be used inside a constructor
to invoke another constructor of the same class.

public class Circle {

}

private double radius;
-
.H"'ﬂ-ﬂ-r

public_Citcle(double radius) {
this.radius = radius;

} S — » Lhis must be explicitly used to reference the data
field radius of the object being constructed
public Circle() {
this(1.0);
y T

= this i5 used to invoke another constructor

public double getArea() {
return this.radius * this.radius * Math.PI;

} "
Y Y
Every instance variable belongs to an instance represented by this,
which 1s normally omitted

Getting Input from the Console

Polymorphism

Getting Input from the Console
S —

e You can obtain input from an input dialog box
using the JOptionPane.showlnputDialog
method.

e Alternatively, you may obtain input from the
console.

e Java uses System.out to refer to the standard
output device, and System.in to the standard
input device.

e By default the output device is the console, and
the input device is the keyboard.

Polymorphism

Getting Input from the Console
S —

e To perform console output, you simply use the
printin method to display a primitive value or a
string to the console.

e Console input is not directly supported in Java,
but you can use the Scanner class to create an
object to read input from System.in, as follows:

Scanner scanner = new Scanner(System.in);

Polymorphism

Getting Input from the Console
S —

e A Scanner object contains the following
methods for reading an input:

- next(): reading a string. A string is delimited by
spaces.

- nextByte(): reading an integer of the byte type.

— nextShort(): reading an integer of the short type.

- nextInt(): reading an integer of the int type.

- nextLong(): reading an integer of the long type.

— nextFloat(): reading a number of the float type.

- nextDouble(): reading a number of the double type.

Polymorphism

Getting Input from the Console
S —

e For example, the following statements prompt
the user to enter a double value from the
console.

System.out.print("Enter a double value: ");
Scanner scanner = new Scanner(System.in);
double d = scanner.nextDouble();

Dl\l X7 nv“h:am

| package chapter(2;
2
3 import java.util.Scanner; // Scanner is in java.uril
4
5 public class TestScanner |
6 public static void main(String args[]) |
7 // Create a Scanner
8 Scanner scanner = new Scanner(System.in);
9
10 // Prompt the user to enter an integer
11 System.out.print(""Enter an integer: '');
12 int intValue = scanner.nex tint();
13 System,out.println{'"You entered the integer " + intValue);
14
15 /! Prompt the user to enter a double value
16 System.out.print(""Enter a double value: ");
17 double doubleValue = scanner.nextDouble();
18 System,out.println{""You entered the double value "
19 + doubleValue);
20
21 // Prompt the user to enter a string
22 System.out.print(""Enter a string without space: "');
23 String string = scanner.next();
24 System.out.println{" You entered the string " + string);
25 }
26 |

References

Polymorphism

References
a]

e Y. Daniel Liang, Introduction to Java

Programming, Sixth Edition,
Pearson Education, 2007. (Chapter 9)

