
23. Polymorphism

Java

Summer 2008

Instructor: Dr. Masoud Yaghini

Polymorphism

Outline

� Polymorphism, Dynamic Binding, and Generic

Programming

� Casting Objects and the instanceof Operator

� The ArrayList Class

� The protected Data and Methods

� The final Classes, Methods, and Variables

� The this Keyword

� Getting Input from the Console

� References

Polymorphism, Dynamic Binding,
and Generic Programming

Polymorphism

Polymorphism

� The inheritance relationship enables a

subclass to inherit features from its superclass

with additional new features.

� A subclass is a specialization of its superclass

� Every instance of a subclass is an instance of � Every instance of a subclass is an instance of

its superclass, but not vice versa.

� For example, every circle is an object, but not

every object is a circle.

� Therefore, you can always pass an instance of

a subclass to a parameter of its superclass

type.

Polymorphism

PolymorphismDemo.java

Polymorphism

PolymorphismDemo.java

� The output?

Student

Student

Person

java.lang.Object@10b30a7

Polymorphism

Polymorphism

� When the method m(Object x) is executed, the

argument x's toString method is invoked.

� x may be an instance of GraduateStudent,

Student, Person, or Object.

� Classes GraduateStudent, Student, Person, � Classes GraduateStudent, Student, Person,

and Object have their own implementations of

the toString method.

� Which implementation is used will be

determined dynamically by the Java Virtual

Machine at runtime.

Polymorphism

Polymorphism

� This capability is known as dynamic binding.

It is also known as polymorphism (from a

Greek word meaning "many forms") because

one method has many implementations.

� Polymorphism is a feature that an object of a

subtype can be used wherever its supertype

value is required.

Polymorphism

Polymorphism

� Dynamic binding works as follows: Suppose an object

o is an instance of classes C1, C2, ..., Cn-1, and Cn

� Where C1 is a subclass of C2, C2 is a subclass of C3,

..., and Cn-1 is a subclass of Cn, as shown below:

� That is, Cn is the most general class, and C1 is the

most specific class.

� In Java, Cn is the Object class.

Polymorphism

Polymorphism

� If o invokes a method p, the JVM searches the

implementation for the method p in C1, C2, ...,

Cn-1, and Cn, in this order, until it is found.

� Once an implementation is found, the search

stops and the first-found implementation is stops and the first-found implementation is

invoked.

� For example, when m(new GraduateStudent())

is invoked, the toString method defined in the

Student class is used.

Polymorphism

Generic Programming

� Polymorphism allows methods to be used generically

for a wide range of object arguments.

� This is known as generic programming. If a method's

parameter type is a superclass (e.g., Object), you may

pass an object to this method of any of the parameter's

subclasses (e.g., Student or String). subclasses (e.g., Student or String).

� When an object (e.g., a Student object or a String

object) is used in the method, the particular

implementation of the method of the object invoked

(e.g., toString) is determined dynamically.

Casting Objects and the
instanceof Operator

Polymorphism

Casting Objects

� You have already used the casting operator to convert

variables of one primitive type to another.

� Casting can also be used to convert an object of one

class type to another within an inheritance hierarchy.

� In the preceding section, the statement

m(new Student());

– assigns the object new Student() to a parameter of the Object
type.

� This statement is equivalent to

Object o = new Student(); // Implicit casting m(o);

Polymorphism

Casting Objects

� The statement Object o = new Student(), known as

implicit casting, is legal because an instance of

Student is automatically an instance of Object.

� Suppose you want to assign the object reference o to a

variable of the Student type using the following

statement:statement:

Student b = o;

� A compilation error would occur. Why does the

statement Object o = new Student() work and the

statement Student b = o doesn't?

� Because a Student object is always an instance of

Object, but an Object is not necessarily an instance of

Student.

Polymorphism

Casting Objects

� Even though you can see that o is really a

Student object, the compiler is not clever

enough to know it.

� To tell the compiler that o is a Student object,

use an explicit casting. use an explicit casting.

� Enclose the target object type in parentheses

and place it before the object to be cast, as

follows:

Student b = (Student)o; // Explicit casting

Polymorphism

Casting Objects

� Upcasting:

– When casting an instance of a subclass to a

variable of a superclass

– It is possible, because an instance of a subclass is

always an instance of its superclass. always an instance of its superclass.

� Downcasting:

– When casting an instance of a superclass to a

variable of its subclass

– Explicit casting must be used to confirm your

intention to the compiler with the (SubclassName)

cast notation.

Polymorphism

instanceof Operator

� For the downcasting to be successful, you must make

sure that the object to be cast is an instance of the

subclass.

� If the superclass object is not an instance of the

subclass, a runtime ClassCastException occurs.

For example, if an object is not an instance of Student, � For example, if an object is not an instance of Student,

it cannot be cast into a variable of Student.

� Therefore, to ensure that the object is an instance of

another object before attempting a casting.

� This can be accomplished by using the instanceof
operator.

Polymorphism

instanceof Operator

� Consider the following code:

Object myObject = new Circle();

... // Some lines of code

/** Perform casting if myObject is an instance of Circle */

if (myObject instanceof Circle) { if (myObject instanceof Circle) {

System.out.println("The circle diameter is " +

((Circle)myObject).getDiameter());

...

}

�

Polymorphism

Casting Objects

� To help understand casting, you may also

consider the analogy of fruit, apple, and

orange, with the Fruit class as the superclass

for Apple and Orange.

� An apple is a fruit, so you can always safely � An apple is a fruit, so you can always safely

assign an instance of Apple to a variable for

Fruit.

� However, a fruit is not necessarily an apple, so

you have to use explicit casting to assign an

instance of Fruit to a variable of Apple.

Polymorphism

Casting Objects

� why casting is necessary?

� Variable myObject is declared Object.

� The declared type decides which method to match at

compile time. Using myObject.getDiameter() would

cause a compilation error because the Object class

does not have the getDiameter method. does not have the getDiameter method.

� The compiler cannot find a match for

myObject.getDiameter().

� It is necessary to cast myObject into the Circle type to

tell the compiler that myObject is also an instance of

Circle.

Polymorphism

Casting Objects

� Why not declare myObject as a Circle type in

the first place?

� To enable generic programming, it is a good

practice to declare a variable with a supertype,

which can accept a value of any subtype.which can accept a value of any subtype.

Polymorphism

TestPolymorphismCasting.java

Polymorphism

TestPolymorphismCasting.java

Polymorphism

TestPolymorphismCasting.java

� The program uses implicit casting to assign a

Circle object to object1 and a Rectangle object

to object2, and then invokes the displayObject

method to display the information on these

objects.objects.

� Casting can only be done when the source

object is an instance of the target class.

� The program uses the instanceof operator to

ensure that the source object is an instance of

the target class before performing a casting

Polymorphism

TestPolymorphismCasting.java

� The object member access operator (.)

precedes the casting operator.

� Use parentheses to ensure that casting is done

before the . operator, as in

((Circle)object).getArea(); ((Circle)object).getArea();

The ArrayList Class

Polymorphism

The ArrayList Class

� You can create an array to store objects.

� But the array's size is fixed once the array is

created.

� Java provides the ArrayList class that can be

used to store an unlimited number of objects.used to store an unlimited number of objects.

� ArrayList is a class of java.util.

Polymorphism

Some methods in ArrayList

� +ArrayList()

– Creates an empty list.

� +add(o: Object) : void

– Appends a new element o at the end of this list.

� +add(index: int, o: Object) : void� +add(index: int, o: Object) : void

– Adds a new element o at the specified index in this

list.

� +clear(): void

– Removes all the elements from this list.

� +contains(o: Object): boolean

– Returns true if this list contains the element o.

Polymorphism

Some methods in ArrayList

� +get(index: int) : Object

– Returns the element from this list at the specified

index.

� +indexOf(o: Object) : int

– Returns the index of the first matching element in – Returns the index of the first matching element in

this list.

� +isEmpty(): boolean

– Returns true if this list contains no elements.

� +lastIndexOf(o: Object) : int

– Returns the index of the last matching element in

this list.

Polymorphism

Some methods in ArrayList

� +remove(o: Object): boolean

– Removes the element o from this list.

� +size(): int

– Returns the number of elements in this list.

� +remove(index: int) : Object� +remove(index: int) : Object

– Removes the element at the specified index.

� +set(index: int, o: Object) : Object

– Sets the element at the specified index.

Polymorphism

TestArrayList.java

Polymorphism

TestArrayList.java

Polymorphism

TestArrayList.java

Polymorphism

TestArrayList.java

� You will get a compilation warning “unchecked

operation” Ignore it.

� The output:

List size? 6List size? 6

Is Toronto in the list? true

The location of New York in the list? 1

Is the list empty? false

London Beijing Paris Hong Kong Singapore

The area of the circle? 12.566370614359172

Polymorphism

The ArrayList Class

� Differences and Similarity between Arrays and

ArrayList:

– Once an array is created, its size is fixed.

– You can access an array element using the square

bracket notation (e.g., a[index]). bracket notation (e.g., a[index]).

– When an ArrayList is created, its size is 0.

– You cannot use the get and set method if the

element is not in the list.

– It is easy to add, insert, and remove elements in a

list, but it is rather complex to add, insert, and

remove elements in an array.

Polymorphism

The ArrayList Class

� Differences and Similarity between Arrays and ArrayList:

The protected Data and Methods

Polymorphism

The protected Data and Methods

� The protected modifier can be applied on data

and methods in a class.

� A protected data or a protected method in a

public class can be accessed by any class in

the same package or its subclasses, even if the same package or its subclasses, even if

the subclasses are in a different package.

� The modifiers private, protected, and public are

known as visibility or accessibility modifiers

because they specify how class and class

members are accessed.

Polymorphism

Visibility modifiers

� The visibility of these modifiers increases in this order:

� Summarizing the accessibility of the members in a

classclass

Polymorphism

Visibility modifiers

Polymorphism

A Subclass Cannot Weaken the Accessibility

� A subclass may override a protected method in

its superclass and change its visibility to public.

� However, a subclass cannot weaken the

accessibility of a method defined in the

superclass. superclass.

� For example, if a method is defined as public in

the superclass, it must be defined as public in

the subclass.

The final Classes, Methods, and
Variables

Polymorphism

The final Classes, Methods, and Variables

� The final class cannot be extended:
final class Math {

...

}

The final variable is a constant:� The final variable is a constant:
final static double PI = 3.14159;

� The final method cannot be
overridden by its subclasses.

Polymorphism

The final Classes, Methods, and Variables

� The modifiers are used on classes and class

members (data and methods), except that the

final modifier can also be used on local

variables in a method.

� A final local variable is a constant inside a � A final local variable is a constant inside a

method.

The this Keyword

Polymorphism

The this Keyword

� A property (data field) name is often used as

the parameter name in a set method for the

property.

� In this case, you need to reference the hidden

property name in the method in order to set a property name in the method in order to set a

new value to it.

� A hidden static variable can be accessed

simply by using the ClassName.StaticVariable

reference.

� A hidden instance variable can be accessed by

using the keyword this.

Polymorphism

The this Keyword

� The keyword this serves as the proxy for the

object that invokes the method.

� The line this.i = i means "assign the value of parameter

i to the data field i of the calling object."

Polymorphism

The this Keyword

� The keyword this can also be used inside a constructor

to invoke another constructor of the same class.

Getting Input from the Console

Polymorphism

Getting Input from the Console

� You can obtain input from an input dialog box

using the JOptionPane.showInputDialog

method.

� Alternatively, you may obtain input from the

console.console.

� Java uses System.out to refer to the standard

output device, and System.in to the standard

input device.

� By default the output device is the console, and

the input device is the keyboard.

Polymorphism

Getting Input from the Console

� To perform console output, you simply use the

println method to display a primitive value or a

string to the console.

� Console input is not directly supported in Java,

but you can use the Scanner class to create an but you can use the Scanner class to create an

object to read input from System.in, as follows:

Scanner scanner = new Scanner(System.in);

Polymorphism

Getting Input from the Console

� A Scanner object contains the following

methods for reading an input:

– next(): reading a string. A string is delimited by

spaces.

– nextByte(): reading an integer of the byte type.– nextByte(): reading an integer of the byte type.

– nextShort(): reading an integer of the short type.

– nextInt(): reading an integer of the int type.

– nextLong(): reading an integer of the long type.

– nextFloat(): reading a number of the float type.

– nextDouble(): reading a number of the double type.

Polymorphism

Getting Input from the Console

� For example, the following statements prompt

the user to enter a double value from the

console.

System.out.print("Enter a double value: ");

Scanner scanner = new Scanner(System.in); Scanner scanner = new Scanner(System.in);

double d = scanner.nextDouble();

Polymorphism

References

Polymorphism

References

� Y. Daniel Liang, Introduction to Java

Programming, Sixth Edition,

Pearson Education, 2007. (Chapter 9)

The End

