24. Abstract Classes

Summer 2008
Instructor: Dr. Masoud Yaghini

Abstract Classes

Outline
-]

e Abstract Classes
e References

Abstract Classes

Abstract Classes

Abstract Classes
-_C]

e In the inheritance hierarchy, classes become
more specific and concrete with each new
subclass.

e If you move from a subclass back up to a
superclass, the classes become more general
and less specific.

e Class design should ensure that a superclass
contains common features of its subclasses.

e Sometimes a superclass is so abstract that it
cannot have any specific instances.

e Such a class is referred to as an abstract c/ass.

Abstract Classes

Abstract Classes
-_C]

e In the preceding chapter we compute areas and
perimeters for all geometric objects

e |tis better to declare the getArea() and getPerimeter()
methods in the GeometricObject class.

e These methods cannot be implemented in the
GeometricObject class because their implementation is
dependent on the specific type of geometric object.

e Such methods are referred to as abstract methods.

e A class that contains abstract methods must be
declared abstract.

Abstract Classes

The abstract Modifier
-]

e [he abstract class

— Cannot be instantiated (you cannot create instances
of abstract classes)

— Should be extended and implemented in subclasses

e The abstract method
—- Method signature without implementation
— Its implementation is provided by the subclasses.

Abstract Classes

The new GeometricObject class contains abstract methods
|

Crenmerricihject

-color: 5tring
-filled: boolean
-dateCreated: java.util.Date

= #GeometricObject()
+getColor(): String
+s5etlolor(color: S5tring): void
+1s5Fi1led(): boolean
+5etFilled(filled: boolean): void
+getDateCreated(): java.util.Date
+tostring(): String
+getArea): double
+gatPerimater(): double

T T

The # sign indicates
protected modifer

Circle Rectangle

-radius: double -width: double

+Circle() -height: double

+Circle(radius: double) +Rectangle()

+getRadius(): double +Rectangle(width: double, height: double)

+setRadius(radius: double): void +getWidth(): double

+getDiameter(): double +setWidth(width: double): void
+getHeight(): double
+5etHeight(height: double}: wvoid

SO o =) O h e b —

package chapter10;

public abstract class GeometricObject2 |

private String color = "white"';
private boolean filled;
private java.util. Date dateCreated:;

/** Construct a default geometric object */
protected GeometricObject2() {
dateCreated = new java.util. Date();

J

/¥ Return color */
public String getColor() {
return color;

}

/¥ Set a new color */
public void setColor{String color) |
this.color = color:

J

/** Return filled. Since filled is boolean,
so, the get method name is isFilled */
public boolean isFilled() {
return filled;

J

[a YaFaVaYal

[a YaFaVaYal

29 /®* Set a new filled */

30 public void setFilled{boolean filled) {
31 this. filled = filled;

2}

33

34 /** Get dateCreated */

35 public java.util. Date getDateCreated() {
36 return date Created;

37}

38

39 /** Return a string representation of this object */
40 publie String toString() |

41 return "created on " + dateCreated + ""\ncolor: "' + color +
42 " and filled: " + filled:;

43 }

44

45 /¥* Abstract method getArea ¥/

46 public abstract double getArea():

47

48 /** Abstract method getPerimeter */
49 public abstract double getPerimeter();
50}

Abhctract f Mlaconc

15
16
17
[8
19

package chapterl0;

public class TestGeometricObject {
/** Main method */
public static void main(String| | args) {
// Declare and initialize two geometric objects
GeometricObject2 geoObject] = new Circle(5);
GeometricObject2 geoObject2 = new Rectangle(5, 3);

System.out.println("'The two objects have the same area? " +
equalArea(geoObjectl, geoObject2));

// Display circle
displayGeometricObject(geoObject1):

// Display rectangle
displayGeometricObject(geoObject2):

Abhctract f Mlaconc

) 2 2

2 12 2 2 2 2 2 2 2
>

I
o WO oo

o —

/** A method for comparing the areas of two geometric objects */
public static boolean equalArea(GeometricObject2 objectl,
GeometricObject2 object2) {
return objectl.getArea() == object2.getArea():

}

/** A method for displaying a geometric object */

public static veid displayGeometricObject(GeometricObject2 object) {
System.out.println();
System.out.println("The area is "' + object.getArea());
System.out.println(""The perimeter is "' + object.getPerimeter());

|

Abstract Classes

Abstract Classes
-_C]

e An abstract class cannot be instantiated using
the new operator

e But you can still define its constructors, which
are invoked in the constructors of its
subclasses.

e For instance, the constructors of
GeometricObject are invoked in the Circle
class and the Rectangle class.

Abstract Classes

Abstract Classes
-_C]

e A class that contains abstract methods must be
abstract.

e However, it is possible to declare an abstract
class that contains no abstract methods.

e In this case, you cannot create instances of the
class using the new operator.

e This class is used as a base class for defining
a new subclass.

References

Abstract Classes

References
a]

e Y. Daniel Liang, Introduction to Java
Programming, Sixth Edition,
Pearson Education, 2007. (Chapter 10)

