
26. Object-Oriented Design

Java

Summer 2008

Instructor: Dr. Masoud Yaghini

Object-Oriented Design

Object-Oriented Design

� In the preceding chapters you learned the

concepts of object-oriented programming, such

as objects, classes, class inheritance, and

polymorphism.

� This chapter focuses on the development of � This chapter focuses on the development of

software systems using the object-oriented

approach, and introduces class modeling using

the Unified Modeling Language (UML).

� You will learn class-design guidelines.

Object-Oriented Design

Outline

� The Software Development Process

� Discovering Class Relationships

� Case Study: Borrowing Loans

� References� References

The Software Development
Process

Object-Oriented Design

The Software Development Process

� Developing a software project is an

engineering process.

� Software products, no matter how large or how

small, have the same developmental phases:

– requirements specification, – requirements specification,

– analysis,

– design,

– implementation,

– testing,

– deployment, and

– maintenance

Object-Oriented Design

The Software Development Process

Object-Oriented Design

Requirements specification

� Requirements specification is a formal

process that seeks to understand the problem

and document in detail what the software

system needs to do.

� This phase involves close interaction between � This phase involves close interaction between

users and developers.

� In the real world problems are not well defined.

� You need to work closely with your customer

and study a problem carefully to identify its

requirements.

Object-Oriented Design

System analysis

� System analysis seeks to analyze the

business process in terms of data flow, and to

identify the system's input and output.

� Part of the analysis entails modeling the

system's behavior. system's behavior.

� The model is intended to capture the essential

elements of the system and to define services

to the system.

Object-Oriented Design

System design

� System design is the process of designing the

system's components.

� This phase involves the use of many levels of

abstraction to decompose the problem into

manageable components, identify classes and manageable components, identify classes and

interfaces, and establish relationships among

the classes and interfaces.

Object-Oriented Design

Implementation

� Implementation is translating the system

design into programs.

� Separate programs are written for each

component and put to work together.

� This phase requires the use of a programming � This phase requires the use of a programming

language like Java.

� The implementation involves coding, testing,

and debugging.

Object-Oriented Design

Testing

� Testing ensures that the code meets the

requirements specification and weeds out

bugs.

� An independent team of software engineers

not involved in the design and implementation not involved in the design and implementation

of the project usually conducts such testing.

Object-Oriented Design

Deployment

� Deployment makes the project available for

use.

� For a Java applet, this means installing it on a

Web server; for a Java application, installing it

on the client's computer. on the client's computer.

� A project usually consists of many classes.

� An effective approach for deployment is to

package all the classes into a Java archive file.

Object-Oriented Design

Maintenance

� Maintenance is concerned with changing and

improving the product.

� A software product must continue to perform

and improve in a changing environment.

� This requires periodic upgrades of the product � This requires periodic upgrades of the product

to fix newly discovered bugs and incorporate

changes.

Object-Oriented Design

Object-Oriented Design

� This chapter is mainly concerned with object-

oriented design.

� While there are many object-oriented

methodologies, UML has become the industry-

standard notation for object-oriented modeling. standard notation for object-oriented modeling.

� The process of designing classes calls for

identifying the classes and discovering the

relationships among them.

Discovering Class Relationships

Object-Oriented Design

Discovering Class Relationships

� The relationships among classes :

– Association

– Aggregation

– Composition

– Inheritance– Inheritance

Object-Oriented Design

Association

� Association is a general binary relationship

that describes an activity between two classes.

� For example,

– a student taking a course is an association between

the Student class and the Course classthe Student class and the Course class

– a faculty member teaching a course is an

association between the Faculty class and the

Course class

Object-Oriented Design

Association

� An association is illustrated by a solid line between two � An association is illustrated by a solid line between two

classes with an optional label that describes the

relationship.

� The labels are Take and Teach.

� Each relationship may have an optional small black

triangle that indicates the direction of the relationship.

� The direction indicates that a student takes a course.

Object-Oriented Design

Association

� Each class involved in the relationship may

have a role name that describes the role it have a role name that describes the role it

plays in the relationship.

� Teacher is the role name for Faculty.

Object-Oriented Design

Association

� Each class involved in an association may specify
a multiplicity. a multiplicity.

� A multiplicity could be a number or an interval that
specifies how many objects of the class are
involved in the relationship.

� The character * means unlimited number of
objects, and the interval m..n means that the
number of objects should be between m and n,
inclusive.

Object-Oriented Design

Association

� Each student may take any number of courses

� Each course must have at least five students

and at most sixty students

� Each course is taught by only one faculty

member

� A faculty member may teach from zero to three

courses per semester

Object-Oriented Design

Association Between Same Class

� Association may exist between objects of the

same class.

� For example, a person may have a supervisor.

Object-Oriented Design

Association

� An association can be implemented using data fields.

� The method in one class contains a parameter of the

other class.

Object-Oriented Design

Aggregation & Composition

� Aggregation is a special form of association

that represents an ownership relationship

between two objects.

� Aggregation models has-a relationships.

� The owner object is called an aggregating � The owner object is called an aggregating
object, and its class, an aggregating class.

� The subject object is called an aggregated
object, and its class, an aggregated class.

Object-Oriented Design

Aggregation & Composition

� If an object is exclusively owned by an

aggregating object, the relationship between

the object and its aggregating object is referred

to as composition.

� For example, "a student has a name" is a � For example, "a student has a name" is a

composition relationship between the Student

class and the Name class

� Whereas "a student has an address" is an

aggregation relationship between the Student

class and the Address class, since an address

may be shared by several students.

Object-Oriented Design

Aggregation & Composition

� In UML, a filled diamond is attached to an aggregating

class (e.g., Student) to denote the composition

relationship with an aggregated class (e.g., Name)

� An empty diamond is attached to an aggregating class

(e.g., Student) to denote the aggregation relationship

with an aggregated class (e.g., Address)with an aggregated class (e.g., Address)

aggregated class aggregating class aggregated class

Object-Oriented Design

Aggregation & Composition

� An aggregation relationship is usually

represented as a data field in the aggregating

class.

Object-Oriented Design

Inheritance

� Inheritance models the is-an-extension-of
relationship between two classes.

Case Study: Borrowing Loans

Object-Oriented Design

Case Study: Borrowing Loans

� This case study models borrowing loans to

demonstrate:

– how to identify classes,

– discover the relationships between classes, and

– apply class abstraction in object-oriented program – apply class abstraction in object-oriented program

development.

� For simplicity, it focuses on modeling

borrowers and the loans for the borrowers.

Object-Oriented Design

Case Study: Borrowing Loans

� The following steps are usually involved in

building an object-oriented system:

1. Identify classes for the system.

2. Establish relationships among classes.

3. Describe the attributes and methods in each 3. Describe the attributes and methods in each

class.

4. Implement the classes.

Object-Oriented Design

Identify classes for the system

� There are many strategies for identifying

classes in a system, one of which is to study

how the system works and select a number of

use cases, or scenarios.

� Since a borrower is a person who obtains a � Since a borrower is a person who obtains a

loan, and a person has a name and an

address, you can identify the following classes:

– Person

– Name

– Address

– Borrower

– Loan

Object-Oriented Design

Identify classes for the system

� There is no unique solution to find classes

even for simple problems.

� Software development is more an art than a

science.

� The quality of a program ultimately depends on � The quality of a program ultimately depends on

the programmer's experience, and knowledge.

Object-Oriented Design

Establish relationships among classes

� The second step is to establish relationships

among the classes.

� The relationship is derived from the system

analysis.

� When you identify classes, you also think � When you identify classes, you also think

about the relationships among them.

� Establishing relationships among objects helps

you understand the interactions among

objects.

� An object-oriented system consists of a

collection of interrelated cooperative objects.

Object-Oriented Design

Establish relationships among classes

� Relationships for the classes in this example

Object-Oriented Design

Describe the attributes and methods

� The third step is to describe the attributes and methods

in each of the classes you have identified.

� The Name class has:

– the properties firstName, mi, and lastName,

– their associated get and set methods, and the getFullName
method for returning the full name. method for returning the full name.

� The Address class has:

– the properties street, city, state, and zip,

– their associated get and set methods, and the getAddress
method for returning the full address.

Object-Oriented Design

Describe the attributes and methods

� The Loan class has:

– the properties annualInterestRate, numberOfYears, and
loanAmount,

– their associated property get and set methods, and
getMonthlyPayment and getTotalPayment methods.

� The Person class has:� The Person class has:

– the properties name and address,

– their associated get and set methods, and the toString method
for displaying complete information about the person.

� Borrower is a subclass of Person. Additionally,

Borrower has:

– the loan property and its associated get and set methods, and
the toString method for displaying the person and the loan
payments.

Object-Oriented Design

Describe the attributes and methods

Object-Oriented Design

Write the code for the classes

� The fourth step is to write the code for the

classes.

Object-Oriented Design

Object-Oriented Design

Object-Oriented Design

Object-Oriented Design

Object-Oriented Design

Object-Oriented Design

Object-Oriented Design

Object-Oriented Design

Object-Oriented Design

Object-Oriented Design

Object-Oriented Design

Object-Oriented Design

Object-Oriented Design

Write the code for the classes

� The program creates name, address, and loan, stores

the information in a Borrower object, and displays the

information with the loan payment.

References

Object-Oriented Design

References

� Y. Daniel Liang, Introduction to Java

Programming, Sixth Edition,

Pearson Education, 2007. (Chapter 11)

The End

