
28. Exception Handling

Java

Summer 2008

Instructor: Dr. Masoud Yaghini

Exception Handling

Outline

� Exception-Handling Overview

� Example: Divide By Zero

� Example: Handling ArithmeticExceptions and

InputMismatchExceptions

� When to Use Exception Handling

� References

Exception-Handling Overview

Exception Handling

Introduction

� Exception – an indication of a problem that

occurs during a program’s execution

� Exception handling – resolving exceptions

that may occur so program can continue or

terminate gracefullyterminate gracefully

� Exception handling enables programmers to

create programs that are more robust and

fault-tolerant

Exception Handling

Examples

� ArrayIndexOutOfBoundsException – an

attempt is made to access an element past the

end of an array

� ClassCastException – an attempt is made

to cast an object that does not have an is-ato cast an object that does not have an is-a
relationship with the type specified in the cast
operator

� NullPointerException – when a null

reference is used where an object is expected

Exception Handling

Exception-Handling Overview

� Intermixing program logic with error-handling

logic can make programs difficult to read,

modify, maintain and debug

� Exception handling enables programmers to � Exception handling enables programmers to

remove error-handling code from the “main

line” of the program’s execution

Exception Handling

Performance Tip

� If the potential problems occur infrequently,

intermixing program and error-handling logic

can degrade a program’s performance,

� Because the program must perform (potentially � Because the program must perform (potentially

frequent) tests to determine whether the task

executed correctly and the next task can be

performed.

Example: Divide By Zero

Exception Handling

Example: Divide By Zero

� Thrown exception – an exception that has occurred

� Stack trace – the information about exception,
includes:

– Name of the exception (e.g. java.lang.ArithmeticException) in
a descriptive message that indicates the problem

– Complete method-call stack

� ArithmeticException – can arise from a number
of different problems in arithmetic

� Throw point – initial point at which the exception
occurs, top row of call chain

� InputMismatchException – occurs when
Scanner method nextInt receives a string that does
not represent a valid integer

Exception Handling

Exception Handling

DivideByZeroNoExceptionHandling.java

� Output 1:
Please enter an integer numerator: 100

Please enter an integer denominator: 7

Result: 100 / 7 = 14

Exception Handling

DivideByZeroNoExceptionHandling.java

� Output 2:
Please enter an integer numerator: 100

Please enter an integer denominator: 0

Exception in thread "main" java.lang.ArithmeticException: / by zero

at chapter13.DivideByZeroNoExceptionHandling.quotient(DivideByZeroNoExceptionHandling.java:12)

at chapter13.DivideByZeroNoExceptionHandling.main(DivideByZeroNoExceptionHandling.java:24)at chapter13.DivideByZeroNoExceptionHandling.main(DivideByZeroNoExceptionHandling.java:24)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)

at java.lang.reflect.Method.invoke(Method.java:597)

at com.intellij.rt.execution.application.AppMain.main(AppMain.java:90)

Exception Handling

DivideByZeroNoExceptionHandling.java

� Output 3:
Please enter an integer numerator: 100

Please enter an integer denominator: hello

Exception in thread "main" java.util.InputMismatchException

at java.util.Scanner.throwFor(Scanner.java:840)

at java.util.Scanner.next(Scanner.java:1461)

at java.util.Scanner.nextInt(Scanner.java:2091)at java.util.Scanner.nextInt(Scanner.java:2091)

at java.util.Scanner.nextInt(Scanner.java:2050)

at chapter13.DivideByZeroNoExceptionHandling.main(DivideByZeroNoExceptionHandling.java:22)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)

at java.lang.reflect.Method.invoke(Method.java:597)

at com.intellij.rt.execution.application.AppMain.main(AppMain.java:90)

Example: Handling
ArithmeticExceptions and
InputMismatchExceptions

Exception Handling

Example: Handling ArithmeticExceptions and
InputMismatchExceptions

� With exception handling, the program catches

and handles the exception

� Next example allows user to try again if invalid

input is entered (zero for denominator, or non-input is entered (zero for denominator, or non-

integer input)

Exception Handling

Exception Handling

Exception Handling

Exception Handling

DivideByZeroWithExceptionHandling.java

� Output 1:
Please enter an integer numerator: 100

Please enter an integer denominator: 7

Result: 100 / 7 = 14

Exception Handling

DivideByZeroWithExceptionHandling.java

� Output 2:
Please enter an integer numerator: 100

Please enter an integer denominator: 0

Exception: java.lang.ArithmeticException: / by zero

Zero is an invalid denominator. Please try again.Zero is an invalid denominator. Please try again.

Please enter an integer numerator: 100

Please enter an integer denominator: 7

Result: 100 / 7 = 14

Exception Handling

DivideByZeroWithExceptionHandling.java

� Output 3:
Please enter an integer numerator: 100

Please enter an integer denominator: hello

Exception: java.util.InputMismatchException

You must enter integers. Please try again.You must enter integers. Please try again.

Please enter an integer numerator: 100

Please enter an integer denominator: 7

Result: 100 / 7 = 14

Exception Handling

Enclosing Code in a try Block

� try block – encloses code that might throw an

exception and the code that should not execute

if an exception occurs

� Consists of keyword followed by a block of � Consists of keyword try followed by a block of

code enclosed in braces

Exception Handling

Catching Exceptions

� catch block – catches (i.e., receives) and handles an exception,
contains:

– Begins with keyword catch

– Exception parameter in parentheses – exception parameter identifies
the exception type and enables catch block to interact with caught
exception object

– Block of code in curly braces that executes when exception of proper
type occurstype occurs

� Matching catch block – the type of the exception parameter
matches the thrown exception type exactly or is a superclass of it

� Uncaught exception – an exception that occurs for which there are
no matching catch blocks

– Cause program to terminate if program has only one thread;
Otherwise only current thread is terminated and there may be
adverse effects to the rest of the program

Exception Handling

Common Programming Errors

� It is a syntax error to place code between a try

block and its corresponding catch blocks.

� Each catch block can have only a single

parameter—specifying a comma-separated list parameter—specifying a comma-separated list

of exception parameters is a syntax error.

Exception Handling

Termination Model of Exception Handling

� When an exception occurs:

– try block terminates immediately

– Program control transfers to first matching catch block

� After exception is handled:

– Termination model of exception handling – program control
does not return to the throw point because the try block has does not return to the throw point because the try block has

expired; Flow of control proceeds to the first statement after
the last catch block

– Resumption model of exception handling – program control
resumes just after throw point

� try statement – consists of try block and

corresponding catch

Exception Handling

Using the throws Clause

� throws clause – specifies the exceptions a

method may throws

– Appears after method’s parameter list and before

the method’s body

– Contains a comma-separated list of exceptions– Contains a comma-separated list of exceptions

– Exceptions can be thrown by statements in

method’s body of by methods called in method’s

body

– Exceptions can be of types listed in throws clause

or subclasses

When to Use Exception Handling

Exception Handling

When to Use Exception Handling

� Exception handling is designed to process

synchronous errors,

� which occur when a statement executes.

� Examples:

out-of-range array indices, – out-of-range array indices,

– arithmetic overflow (i.e., a value outside the

representable range of values),

– division by zero,

– invalid method parameters

Exception Handling

When to Use Exception Handling

� Exception handling is not designed to process

problems associated with asynchronous

events,

� which occur in parallel with, and independent

of, the program's flow of control. of, the program's flow of control.

� Examples:

– disk I/O completions,

– network message arrivals,

– mouse clicks and keystrokes

References

Exception Handling

References

� H. M. Deitel and P. J. Deitel, Java™ How to

Program, Sixth Edition, Prentice Hall, 2005.

(Chapter 13)

The End

