
33. Accessing Databases with
JDBC

Java

Summer 2008

Instructor: Dr. Masoud Yaghini

Accessing Databases with JDBC

Outline

� JDBC-ODBC driver

� Creating an ODBC Data Source

� Connecting to a Database

� Querying a Database� Querying a Database

� Retrieving Metadata

� Updating a Database

� References

JDBC-ODBC driver

Accessing Databases with JDBC

JDBC-ODBC driver

� To use the JDBC-ODBC driver to access

databases in Java, two drivers must be

installed on the client machine:

– a universal JDBC-ODBC bridge driver and

– a vendor-specific ODBC driver. – a vendor-specific ODBC driver.

Accessing Databases with JDBC

JDBC-ODBC driver

Accessing Databases with JDBC

JDBC-ODBC bridge driver

� The JDBC-ODBC driver comes with Java 2

SDK 1.3 or higher

� The JDBC-to-ODBC Bridge allows any Java

program to access any ODBC data source.

� The driver is class JdbcOdbcDriver in package � The driver is class JdbcOdbcDriver in package

sun.jdbc.odbc.

Accessing Databases with JDBC

ODBC driver

� On the Microsoft Windows platform, most

databases support access via Open Database

Connectivity (ODBC).

� ODBC is a technology developed by Microsoft

to allow generic access to disparate database to allow generic access to disparate database

systems on the Windows platform (and some

UNIX platforms).

Accessing Databases with JDBC

ODBC driver

� By default the ODBC driver is installed on

Windows 98, NT, 2000, and XP.

� If not, install MS Access to get the proper

ODBC driver on your system.

� Upon successful installation, you should see � Upon successful installation, you should see

the icon Data Sources (ODBC) in the

Administrative Tools window under the control

panel

Creating an ODBC Data Source

Accessing Databases with JDBC

Creating an ODBC Data Source

� From the Windows Start button, choose

Setting, Control Panel to bring up the Control

Panel dialog box.

� Double-click Administrative Tools, and then

double-click Data Sources (ODBC) to display double-click Data Sources (ODBC) to display

the ODBC Data Source Administrator dialog

box, as shown in the Figure.

Accessing Databases with JDBC

Creating an ODBC Data Source

Accessing Databases with JDBC

Creating an ODBC Data Source

� Click Add to bring up the Create New Data Source

dialog box, as shown in the Figure.

Accessing Databases with JDBC

Creating an ODBC Data Source

� Select Microsoft Access Driver (*.mdb, *.accdb) and

press Finish to bring the ODBC Microsoft Access

Setup dialog window, as shown in the Figure.

Accessing Databases with JDBC

Creating an ODBC Data Source

� Type Books in the Data Source Name field, and type

Deitel Books Database in the Description filed.

� Click Select to bring up the Select Database dialog

window, as shown in the Figure.

Accessing Databases with JDBC

Creating an ODBC Data Source

� Select Books.accdb from the appropriative

directory.

� Press OK to close the Select Database dialog

window

� Click OK to close the ODBC Microsoft Access � Click OK to close the ODBC Microsoft Access

Setup window

� Click OK to close the ODBC Data Source

Administrator window

Accessing Databases with JDBC

Accessing Database Using Java

� The JDBC driver for MS Access is

sun.jdbc.odbc.JdbcOdbcDriver contained in

JDK.

� The database URL for Access is

jdbc:odbc:dataSource. jdbc:odbc:dataSource.

� For example, if the ODBC data source is

named Books, the URL is jdbc:odbc:Books.

Connecting to a Database

Accessing Databases with JDBC

Connecting to and Querying a Database

� This section illustrates:

– Connecting to a database

– Querying the database

– Display the results of the query in Jtable

� The following discussion presents the key

JDBC aspects of the program.

Accessing Databases with JDBC

Accessing a database

� A typical Java program takes the steps outlined

below to access the database:

1. Loading drivers

– An appropriate driver must be loaded using the

statement shown below before connecting to a statement shown below before connecting to a

database.

Class.forName("JDBCDriverClass");

– A driver is a concrete class.

– For MS-Access we will use:

Class.forName(" sun.jdbc.odbc.JdbcOdbcDriver ");

Accessing Databases with JDBC

Accessing a database

2. Establishing connections

– To connect to a database, use the static method

getConnection(databaseURL) in the

DriverManager class, as follows:

Connection connection =

DriverManager.getConnection(databaseURL); DriverManager.getConnection(databaseURL);

– The URLs for the Access database:

jdbc:odbc:dataSource

– Suppose a data source named Books has been

created for an Access database. The following

statement creates a Connection object:

Connection connection =

DriverManager.getConnection(jdbc:odbc:Books);

Accessing Databases with JDBC

Accessing a database

3. Creating statements

– If a Connection object can be envisioned as a

cable linking your program to a database, an

object of Statement or its subclass can be viewed

as a cart that delivers SQL statements for

execution by the database and brings the result execution by the database and brings the result

back to the program.

– Once a Connection object is created, you can

create statements for executing SQL statements

as follows:

Statement statement =

connection.createStatement();

Accessing Databases with JDBC

Accessing a database

4. Executing statements

– An SQL update statement can be executed using

executeUpdate(String sql), Example:

� statement.executeUpdate("INSERT INTO authors (
firstName, lastName) VALUES ('Sue', 'Smith')");

– An SQL query statement can be executed using

executeQuery(String sql). The result of the query is

returned in ResultSet, Example:

� ResultSet resultSet = statement.executeQuery(
"SELECT authorID, firstName, lastName FROM authors");

Accessing Databases with JDBC

Accessing a database

5. Processing ResultSet

– The ResultSet maintains a table whose current row

can be retrieved.

– The initial row position is null.

– You can use the next method to move to the next – You can use the next method to move to the next

row and the various get methods to retrieve values

from a current row.

– For example, the code given below displays all the

results from the preceding SQL query:

while (resultSet.next())

System.out.println(resultSet.getString(1) + " " +

resultSet.getString(2) + " " + resultSet.getString(3));

Accessing Databases with JDBC

Accessing a database

5. Processing ResultSet (cont.)

– Alternatively, you can use getString("firstName"),

getString("mi"), and getString("lastName") to

retrieve the same three column values.

– The first execution of the next() method sets the – The first execution of the next() method sets the

current row to the first row in the result set, and

subsequent invocations of the next() method set the

current row to the second row, third row, and so on,

to the last row.

Querying a Database

Accessing Databases with JDBC

Querying a Database

� DisplayAuthors.java performs a simple query

on the books database that retrieves the entire

authors table and displays the data.

� This program:� This program:

– Retrieves the entire authors table

– Displays the data in the standard output stream

Accessing Databases with JDBC

Accessing Databases with JDBC

Accessing Databases with JDBC

Querying a Database

� Lines 5

– import the JDBC classes from package java.sql

used in this program.

� Line 14

– uses static method forName of class Class to load – uses static method forName of class Class to load

the class for the database driver.

– This line throws a checked exception of type

java.lang.ClassNotFoundException if the class

loader cannot locate the driver class.

Accessing Databases with JDBC

Querying a Database

� Lines 17

– creates a Connection object (package java.sql)

referenced by connection.

– An object that implements interface Connection

manages the connection between the Java program manages the connection between the Java program

and the database.

– Connection objects enable programs to create SQL

statements that access databases.

– The program initializes Connection with the result of

a call to static method getConnection of class

DriverManager (package java.sql), which attempts

to connect to the database specified by its URL.

Accessing Databases with JDBC

Querying a Database

� Lines 29 (cont.)

– The URL locates the database (possibly on a

network or in the local file system of the computer).

– If the DriverManager cannot connect to the

database, method getConnection tHRows a database, method getConnection tHRows a

SQLException (package java.sql).

� Line 20

– invokes Connection method createStatement to

obtain an object that implements interface

Statement (package java.sql).

– The program uses the Statement object to submit

SQL to the database.

Accessing Databases with JDBC

Querying a Database

� Lines 23-24

– use the Statement object's executeQuery method to

submit a query that selects all the author information

from table authors.

– This method returns an object that implements – This method returns an object that implements

interface ResultSet and contains the result of the

query.

– The ResultSet methods enable the program to

manipulate the query result.

Accessing Databases with JDBC

Querying a Database

� Lines 32-37
– display the data in each ResultSet row.

– Before processing the ResultSet, the program positions

the ResultSet cursor to the first row in the ResultSet with

method next (line 47).

The cursor points to the current row. – The cursor points to the current row.

– Method next returns boolean value true if it is able to

position to the next row; otherwise the method returns

false (end of table).

– Initially, a ResultSet cursor is positioned before the first

row. Attempting to access a ResultSet's contents before

positioning the ResultSet cursor to the first row with

method next causes a SQLException.

Accessing Databases with JDBC

Querying a Database

� Lines 32-37 (cont.)

– Specifying column number 0 when obtaining values
from a ResultSet causes a SQLException.

Retrieving Metadata

Accessing Databases with JDBC

Retrieving Metadata

� JDBC provides the DatabaseMetaData

interface for obtaining database-wide

information and the ResultSetMetaData

interface for obtaining information on the

specific ResultSet, such as column count and specific ResultSet, such as column count and

column names.

Accessing Databases with JDBC

Accessing Databases with JDBC

Accessing Databases with JDBC

Retrieving Metadata

� Line 27

– obtains the metadata for the ResultSet as a

ResultSetMetaData (package java.sql) object.

– The metadata describes the ResultSet's contents.

– Programs can use metadata programmatically to – Programs can use metadata programmatically to

obtain information about the ResultSet's column

names and types.

� Line 28

– uses ResultSetMetaData method getColumnCount

to retrieve the number of columns in the ResultSet.

� Lines 31-33

– display the column names.

Updating a Database

Accessing Databases with JDBC

Accessing Databases with JDBC

References

Accessing Databases with JDBC

References

� H. M. Deitel and P. J. Deitel, Java™ How to

Program, Sixth Edition, Prentice Hall, 2005.

(Chapter 25)

� Y. Daniel Liang, Introduction to Java

Programming, Sixth Edition, Programming, Sixth Edition,

Pearson Education, 2007. (Chapter 32)

The End

