
34. Recursion

Java

Summer 2008

Instructor: Dr. Masoud Yaghini

Recursion

Outline

� Introduction

� Example: Factorials

� Example: Fibonacci Numbers

� Recursion vs. Iteration� Recursion vs. Iteration

� References

Introduction

Recursion

Introduction

� Recursive methods

– A method that invokes itself directly or indirectly.

� Recursion is a useful programming technique.

� In some cases, using recursion enables you to

develop a natural, straightforward, simple develop a natural, straightforward, simple

solution to a problem that would otherwise be

difficult to solve.

� Many mathematical functions are defined using

recursion.

Example: Factorials

Recursion

Example: Factorial

� Consider the factorial of a positive integer n, written n!

(and pronounced "n factorial"), which is the product

n x (n - 1) x (n - 2) x … x 1

� with 1! equal to 1 and 0! defined to be 1. For example,

5! is the product 5 · 4 · 3 · 2 · 1, which is equal to 120.

� The factorial of integer n (where n >= 0) can be

calculated iteratively (non-recursively) using a for

statement as follows:

factorial = 1;

for (int counter = n; counter >= 1; counter--)

factorial = factorial * counter;

Recursion

Recursion

Example: Factorials

� The factorial of a number n can be recursively

defined as follows:

� The factorial of a number n can be recursively

defined as follows:

– 0! = 1; – 0! = 1;

– n! = n x (n - 1)!; n > 0

Recursion

Example: Factorials

� Let factorial(n) be the method for computing n!.

� If you call the method with n = 0, it immediately

returns the result.

� The method knows how to solve the simplest

case, which is referred to as the base case or case, which is referred to as the base case or

the stopping condition.

� If you call the method with n > 0, it reduces the

problem into a subproblem for computing the

factorial of n - 1.

Recursion

Example: Factorials

� The subproblem is essentially the same as the original

problem, but is simpler or smaller than the original.

� Because the subproblem has the same property as the

original, you can call the method with a different

argument, which is referred to as a recursive call.

The recursive algorithm for computing factorial(n) can � The recursive algorithm for computing factorial(n) can

be simply described as follows:

if (n == 0)

return 1;

else

return n * factorial(n - 1);

Recursion

Recursion

Example: Factorials

� For a recursive method to terminate, the

problem must eventually be reduced to a

stopping case.

� When it reaches a stopping case, the method

returns a result to its caller. returns a result to its caller.

� The caller then performs a computation and

returns the result to its own caller.

� This process continues until the result is

passed back to the original caller.

Recursion

Example: Factorials - Invoking factorial(4)

Factorial(4) = 4 * factorial(3)

= 4 * (3 * factorial(2))

= 4 * (3 * (2 * factorial(1)))

= 4 * (3 * (2 * (1 * factorial(0))))

= 4 * (3 * (2 * (1 * 1)))) = 4 * (3 * (2 * (1 * 1))))

= 4 * (3 * (2 * 1))

= 4 * (3 * 2)

= 4 * 6

= 24

Recursion

Example: Factorials - Invoking factorial(4)

Recursion

Example: Factorials – Memory Space

Recursion

Caution

� It is simpler and more efficient to implement the

factorial method using a loop.

� However, the recursive factorial method is a

good example to demonstrate the concept of

recursion.recursion.

Recursion

Caution

� Infinite recursion can occur if recursion does

not reduce the problem in a manner that allows

it to eventually converge into the base case.

� For example, if you mistakenly write the

factorial method as follows:factorial method as follows:

public static long factorial(int n) {

return n * factorial(n - 1);

}

� The method runs infinitely and causes a

StackOverflowError.

Example: Fibonacci Numbers

Recursion

Example: Fibonacci Numbers

� Consider the well-known Fibonacci series problem, as

follows:

The series: 0 1 1 2 3 5 8 13 21 34 55 89 …

indices: 0 1 2 3 4 5 6 7 8 9 10 11

� The Fibonacci series begins with 0 and 1, and each � The Fibonacci series begins with 0 and 1, and each

subsequent number is the sum of the preceding two

numbers in the series.

� The series can be recursively defined as follows:

fib(0) = 0;

fib(1) = 1;

fib(index) = fib(index - 2) + fib(index - 1); index >= 2

Recursion

Example: Fibonacci Numbers

� The recursive algorithm for computing fib(index) can be

simply described as follows:
if (index == 0)

return 0;

else if (index == 1)

return 1; return 1;

else

return fib(index - 1) + fib(index - 2);

� Example:

fib(3) = fib(2) + fib(1)

= (fib(1) + fib(0)) + fib(1)

= (1 + 0) + fib(1)

= 1 + fib(1)

= 1 + 1

= 2

Recursion

Recursion

Example: Fibonacci Numbers

Recursion

Example: Fibonacci Numbers

� The recursive implementation of the fib method

is very simple and straightforward, but not

efficient.

� The recursive fib method is a good example to

demonstrate how to write recursive methods, demonstrate how to write recursive methods,

though it is not practical.

� See ComputeFibonacciIteratively.java an

efficient solution using loops.

Recursion

Recursion vs. Iteration

Recursion

Recursion vs. Iteration

� All recursive methods have the following

characteristics:

– The method is implemented using an if-else or a

switch statement that leads to different cases.

– One or more base cases (the simplest case) are – One or more base cases (the simplest case) are

used to stop recursion.

– Every recursive call reduces the original problem,

bringing it increasingly closer to a base case until it

becomes that case.

Recursion

Recursion vs. Iteration

� In general, to solve a problem using recursion,

you break it into subproblems.

� If a subproblem resembles the original

problem, you can apply the same approach to

solve the subproblem recursively. solve the subproblem recursively.

� This subproblem is almost the same as the

original problem in nature with a smaller size.

Recursion

Recursion vs. Iteration

� Both iteration and recursion use a control

statement

– Iteration uses a repetition statement,

� e.g., for, while or do...while

– Recursion uses a selection statement– Recursion uses a selection statement

� e.g., if, if...else or switch

Recursion

Recursion vs. Iteration

� Both iteration and recursion involve repetition:

– Iteration explicitly uses a repetition statement,

– Recursion achieves repetition through repeated

method calls.

� Iteration and recursion both involve a � Iteration and recursion both involve a

termination test

– Iteration terminates when the loop-continuation

condition fails

– Recursion terminates when a base case is reached

Recursion

Recursion vs. Iteration

� A recursive approach is normally preferred

over an iterative approach when:

– The recursive approach more naturally mirrors the

problem and results in a program that is easier to

understand and debug. understand and debug.

– A recursive approach can often be implemented

with fewer lines of code.

Recursion

Recursion vs. Iteration

� Any problem that can be solved recursively can

also be solved iteratively.

� Recursion can be expensive in terms of

processor time and memory space

� Avoid using recursion in situations requiring � Avoid using recursion in situations requiring

high performance. Recursive calls take time

and consume additional memory.

References

Recursion

References

� Y. Daniel Liang, Introduction to Java

Programming, Sixth Edition,

Pearson Education, 2007. (Chapter 19)

� H. M. Deitel and P. J. Deitel, Java™ How to

Program, Sixth Edition, Prentice Hall, 2005. Program, Sixth Edition, Prentice Hall, 2005.

(Chapter 15)

The End

