34. Recursion

Java

Summer 2008
Instructor: Dr. Masoud Yaghini

Recursion

Outline

- Introduction
- Example: Factorials
- Example: Fibonacci Numbers
- Recursion vs. Iteration
- References

Introduction

Introduction

- Recursive methods
- A method that invokes itself directly or indirectly.
- Recursion is a useful programming technique.
- In some cases, using recursion enables you to develop a natural, straightforward, simple solution to a problem that would otherwise be difficult to solve.
- Many mathematical functions are defined using recursion.

Example: Factorials

Recursion

Example: Factorial

- Consider the factorial of a positive integer n, written n ! (and pronounced "n factorial"), which is the product $n \times(n-1) \times(n-2) \times \ldots \times 1$
- with 1 ! equal to 1 and 0 ! defined to be 1 . For example, 5 ! is the product $5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$, which is equal to 120 .
- The factorial of integer n (where $\mathrm{n}>=0$) can be calculated iteratively (non-recursively) using a for statement as follows:
factorial = 1;
for (int counter $=\mathrm{n}$; counter $>=1$; counter--) factorial $=$ factorial ${ }^{*}$ counter;

```
package chapter19;
import javax.swing.JOptionPane;
public class ComputeFactorialIteratively {
    /** Main method */
    public static void main(String[] args) {
        // Prompt the user to enter an integer
        String intString = JOptionPane.showInputDialog(
            "Please enter a non-negative integer:");
        // Convert string into integer
        int n = Integer.parseInt(intString);
        // Display factorial
        JOptionPane.showMessageDialog(null,
            "Factorial of " + n + " is " + factorial(n));
    }
    /** Return the factorial for a specified index */
    static long factorial(int number) {
        long factorial = 1;
        for (int counter = number; counter >= 1; counter-- )
            factorial = factorial * counter;
        return factorial;
    }
}
```


Example: Factorials

- The factorial of a number n can be recursively defined as follows:
- The factorial of a number n can be recursively defined as follows:
$-0!=1$;
$-\mathrm{n}!=\mathrm{nx}(\mathrm{n}-1)!; \mathrm{n}>0$

Example: Factorials

- Let factorial(n) be the method for computing n !.
- If you call the method with $\mathrm{n}=0$, it immediately returns the result.
- The method knows how to solve the simplest case, which is referred to as the base case or the stopping condition.
- If you call the method with $n>0$, it reduces the problem into a subproblem for computing the factorial of $n-1$.

Recursion

Example: Factorials

- The subproblem is essentially the same as the original problem, but is simpler or smaller than the original.
- Because the subproblem has the same property as the original, you can call the method with a different argument, which is referred to as a recursive call.
- The recursive algorithm for computing factorial(n) can be simply described as follows:
if ($\mathrm{n}==0$)
return 1;
else
return n * factorial(n-1);

Dnommocinn

```
package chapter19;
import javax.swing.JOptionPane;
public class ComputeFactorialRecursively \{
    /** Main method */
    public static void main(String[] args) \{
        // Prompt the user to enter an integer
        String intString \(=\) JOptionPane.showInputDialog(
            'Please enter a non-negative integer:'");
        // Convert string into integer
        int \(\mathrm{n}=\) Integer.parseInt(intString);
        // Display factorial
        JOptionPane.showMessageDialog(null,
            "Factorial of " \(+\mathrm{n}+\) " is " + factorial \((\mathrm{n})\) );
    \}
    /** Return the factorial for a specified index */
    static long factorial(int number) \{
        if (number \(==0\) ) // Stopping condition
            return 1;
        else
            return number * factorial(number - 1); // Call factorial recursively
    \}
\}
```


Example: Factorials

- For a recursive method to terminate, the problem must eventually be reduced to a stopping case.
- When it reaches a stopping case, the method returns a result to its caller.
- The caller then performs a computation and returns the result to its own caller.
- This process continues until the result is passed back to the original caller.

Example: Factorials - Invoking factorial(4)

Factorial(4) $=4$ * factorial(3)

$$
\begin{aligned}
& =4 *(3 * \text { factorial }(2)) \\
& =4^{*}(3 *(2 * \text { factorial(1))) } \\
& =4^{*}\left(3^{*}(2 *(1 * \text { factorial(0)))) }\right. \\
& \left.=4^{*}\left(3^{*}\left(2 *\left(1^{*} 1\right)\right)\right)\right) \\
& =4^{*}\left(3^{*}(2 * 1)\right) \\
& =4^{*}(3 * 2) \\
& =4 * 6 \\
& =24
\end{aligned}
$$

Example: Factorials - Invoking factorial(4)

Recursion

Example: Factorials - Memory Space

Caution

- It is simpler and more efficient to implement the factorial method using a loop.
- However, the recursive factorial method is a good example to demonstrate the concept of recursion.

Caution

- Infinite recursion can occur if recursion does not reduce the problem in a manner that allows it to eventually converge into the base case.
- For example, if you mistakenly write the factorial method as follows:
public static long factorial(int n) \{ return n * factorial(n-1); \}
- The method runs infinitely and causes a StackOverflowError.

Example: Fibonacci Numbers

Recursion

Example: Fibonacci Numbers

- Consider the well-known Fibonacci series problem, as follows:

The series: $01123581321345589 \ldots$ indices: $\quad 01234567891011$

- The Fibonacci series begins with 0 and 1 , and each subsequent number is the sum of the preceding two numbers in the series.
- The series can be recursively defined as follows:
fib(0) $=0$;
$\mathrm{fib}(1)=1$;
fib(index) $=$ fib(index -2) + fib(index -1); index $>=2$

Recursion

Example: Fibonacci Numbers

- The recursive algorithm for computing fib(index) can be simply described as follows:

```
if (index == 0)
    return 0;
else if (index == 1)
    return 1;
else
    return fib(index - 1) + fib(index - 2);
```

- Example:

$$
\begin{aligned}
\mathrm{fib}(3) \quad & =\mathrm{fib}(2)+\mathrm{fib}(1) \\
& =(\mathrm{fib}(1)+\mathrm{fib}(0))+\mathrm{fib}(1) \\
& =(1+0)+\mathrm{fib}(1) \\
& =1+\mathrm{fib}(1) \\
& =1+1 \\
& =2
\end{aligned}
$$

Donnwainn

```
package chapter19;
import javax.swing.JOptionPane;
public class ComputeFibonacciRecursively \{
    /** Main method */
    public static void main(String args[]) \{
        // Read the index
        String intString \(=\) JOptionPane.showInputDialog(
            "Enter an index for the Fibonacci number:"');
        // Convert string into integer
        int index = Integer.parseInt(intString);
        // Find and display the Fibonacci number
        JOptionPane.showMessageDialog(null,
            "Fibonacci number at index " + index + " is " + fib(index));
    \}
    /** The method for finding the Fibonacci number */
    public static long fib(long index) \{
        if (index \(==0\) ) // Stopping condition
            return 0 ;
            else if (index \(==1\) ) // Stopping condition
                return 1 ;
            else // Reduction and recursive calls
            return fib(index-1) + fib(index-2);
    \}
\}
```


Recursion

Example: Fibonacci Numbers

Example: Fibonacci Numbers

- The recursive implementation of the fib method is very simple and straightforward, but not efficient.
- The recursive fib method is a good example to demonstrate how to write recursive methods, though it is not practical.
- See ComputeFibonaccilteratively.java an efficient solution using loops.

Donnwion

```
package chapter19;
import javax.swing.JOptionPane;
public class ComputeFibonacciIteratively {
    /** Main method */
    public static void main(String args[]) {
        // Read the index
        String intString = JOptionPane.showInputDialog(
            "Enter an index for the Fibonacci number:'');
        // Convert string into integer
        int index = Integer.parseInt(intString);
        // Find and display the Fibonacci number
        JOptionPane.showMessageDialog(null,
            "Fibonacci number at index (Iteratively) " + index + " is " + fib(index));
    }
    /** The method for finding the Fibonacci number */
    public static long fib(int n) {
        int f0 = 0, f1= 1, currentFib;
        if (n == 0) return 0;
        if (n== 1) return 1;
        for (int i=1; i < n; i++) {
            currentFib = f0+f1;
            f0 = f1;
            f1 = currentFib;
        }
        return f1;
    }
}
```


Recursion vs. Iteration

Recursion vs. Iteration

- All recursive methods have the following characteristics:
- The method is implemented using an if-else or a switch statement that leads to different cases.
- One or more base cases (the simplest case) are used to stop recursion.
- Every recursive call reduces the original problem, bringing it increasingly closer to a base case until it becomes that case.

Recursion vs. Iteration

- In general, to solve a problem using recursion, you break it into subproblems.
- If a subproblem resembles the original problem, you can apply the same approach to solve the subproblem recursively.
- This subproblem is almost the same as the original problem in nature with a smaller size.

Recursion

Recursion vs. Iteration

- Both iteration and recursion use a control statement
- Iteration uses a repetition statement,
- e.g., for, while or do...while
- Recursion uses a selection statement
- e.g., if, if...else or switch

Recursion vs. Iteration

- Both iteration and recursion involve repetition:
- Iteration explicitly uses a repetition statement,
- Recursion achieves repetition through repeated method calls.
- Iteration and recursion both involve a termination test
- Iteration terminates when the loop-continuation condition fails
- Recursion terminates when a base case is reached

Recursion vs. Iteration

- A recursive approach is normally preferred over an iterative approach when:
- The recursive approach more naturally mirrors the problem and results in a program that is easier to understand and debug.
- A recursive approach can often be implemented with fewer lines of code.

Recursion vs. Iteration

- Any problem that can be solved recursively can also be solved iteratively.
- Recursion can be expensive in terms of processor time and memory space
- Avoid using recursion in situations requiring high performance. Recursive calls take time and consume additional memory.

References

Recursion

References

- Y. Daniel Liang, Introduction to Java Programming, Sixth Edition, Pearson Education, 2007. (Chapter 19)
- H. M. Deitel and P. J. Deitel, Java ${ }^{\text {TM }}$ How to Program, Sixth Edition, Prentice Hall, 2005. (Chapter 15)

The End

