34. Recursion

Summer 2008
Instructor: Dr. Masoud Yaghini



Recursion

Outline
-]

Introduction

Example: Factorials
Example: Fibonacci Numbers
Recursion vs. lteration
References



Introduction



Recursion

Introduction
-_C ]

e Recursive methods
- A method that invokes itself directly or indirectly.
e Recursion is a useful programming technigue.

e In some cases, using recursion enables you to
develop a natural, straightforward, simple
solution to a problem that would otherwise be
difficult to solve.

e Many mathematical functions are defined using
recursion.



Example: Factorials



Recursion

Example: Factorial
@« ]

e Consider the factorial of a positive integer n, written n!
(and pronounced "n factorial"), which is the product

nx(n-1)xn-2)x...x1
e with 1! equal to 1 and 0! defined to be 1. For example,
5lis the product5-4 -3 -2 -1, which is equal to 120.

e The factorial of integer n (where n >= 0) can be
calculated iteratively (non-recursively) using a for
statement as follows:
factorial = 1;

for ( int counter = n; counter >= 1; counter-- )
factorial = factorial * counter;



[ ]
D PaVal h b 2Tl Pah a

25

package chapterl9;
import javax.swing JOptionPane;

public class ComputeFactoriallteratively |
/*% Main method %
public static void main(String[] args) {
// Prompt the user to enter an integer
String intString = JOptionPane.show InputDialog(
"Please enter a non-negative integer:");

// Convert string into integer
int n = Integer.parselnt(intString);

/f Display factorial
J1OptionPane.showMessageDialog(null,
"Factorial of " + n+ " 1s "' + factorial (n));

/** Return the factorial for a specified index */
static long factorial(int number) {
long factorial = 1;
for ( int counter = number; counter >= 1; counter-- )
factorial = factorial * counter;
return factorial:




Recursion

Example: Factorials
o —————/—////]

e The factorial of a number n can be recursively
defined as follows:

e The factorial of a number n can be recursively
defined as follows:
- 0l =1;
- nl=nx(n-1);n>0



Recursion

Example: Factorials
o —————/—////]

e Let factorial(n) be the method for computing n!.
e If you call the method with n = 0, it immediately
returns the result.

e [he method knows how to solve the simplest
case, which is referred to as the base case or
the stopping condition.

e If you call the method with n > 0, it reduces the
problem into a subproblem for computing the
factorial of n - 1.



Recursion

Example: Factorials
o —————/—////]

e The subproblem is essentially the same as the original
problem, but is simpler or smaller than the original.

e Because the subproblem has the same property as the
original, you can call the method with a different
argument, which is referred to as a recursive call.

e The recursive algorithm for computing factorial(n) can
be simply described as follows:

if (n ==0)
return 1;
else
return n * factorial(n - 1);



package chapterl9;

import javax.swing.JOptionPane;

public class ComputeFactorialRecursively |
/%% Main method *
public static void main(String[] args) |
/' Prompt the user to enter an integer
String intString = JOptionPane.show InputDialog(
""Please enter a non-negative integer:');

int n = Integer.parselnt(intString):

// Display factorial
J1OptionPane.showMessageDialog(null
"Factorial of " + n+ " is " + factorial(n));

1

2

3

4

5

6

7

8

9

10

11

12 // Convert string into integer
13

14

15

16

17

18 }
19

20

/*% Return the factorial for a specified index */
21 static long factorial(int number) {

22 il (number == (1) // Stopping condition

23 return |[;

24 else

25 return number * factorial(number - 1) // Call factorial recursively
26 }




Recursion

Example: Factorials
o —————/—////]

e For a recursive method to terminate, the
problem must eventually be reduced to a
stopping case.

e When it reaches a stopping case, the method
returns a result to its caller.

e The caller then performs a computation and
returns the result to its own caller.

e This process continues until the result is
passed back to the original caller.



Recursion

Example: Factorials - Invoking factorial(4)
.

Factorial(4) = 4 * factorial(3)
=4 * (3 * factorial(2))



Recursion

Example: Factorials - Invoking factorial(4)

I'.i{:mn.al{d}

"ﬂ-.:p (h executes factonial(4)
Step return 24 |

eturn 4 * factorial{3)

"!ul-.r.l |7 executes factoral(3)
Step 8: return 6
Llu1 ni* f.aunrmll[i
step 2t executes factorial(2)
Step 7: return 2
1

return 2 ¥ I'ﬂl;.l:ut'iﬂl[l}l

"ﬂi:p 3 executes factonial(l)
sStep o return 1 |

return 1 * Tactoral ()

] Step 4: executes factorial{(l)
Step 5 return 1

| 1
return 1



Recursion

Example: Factorials — Memory Space
S —

Apace Kequired
fior Emcborial{ii)
Space Reguired Space Required
for factorial( 1) for Eactorial{ L)
3 Space Baguired Space Regured Space Required
for Eactorial(2) for factorial( ) for Eactorial{ 2)
Space Required Space Required Space Required Space Required
for factorial(3) for Eactorial( 3) for fnctorial(X) for factorial{ 1)
Space Requined Space Required Spade Required Space Required Space Required
for faciomal{d} for Tactoresli 41 for Enctoriali4) foar Ectoriali =) foer Emctarial 45
space Requined
for factonial{1 }
Space Requined Space Required
for factormald 2 fior factormali 2)
Space Requined Space Heqguired 8 | Space Required
for [adomal{ 3 for Gactorli 3] for factoriali 1)
Space Required space Reguined Space Required Spasce Bedquired
for factonial{4} for factoral(4) for factorial{d) for factorial(4)




Recursion

Caution
]

e It is simpler and more efficient to implement the
factorial method using a loop.

e However, the recursive factorial method is a
good example to demonstrate the concept of
recursion.



Recursion

Caution
]

e /nfinite recursion can occur if recursion does
not reduce the problem in a manner that allows
it to eventually converge into the base case.

e For example, if you mistakenly write the
factorial method as follows:

public static long factorial(int n) {
return n * factorial(n - 1);

e The method runs infinitely and causes a
StackOverflowError.



Example: Fibonacci Numbers



Recursion

Example: Fibonacci Numbers
< / |/

e Consider the well-known Fibonacci series problem, as

follows:
Theseries: 011235813 2134 55 89 ...
Indices: 01234567 8 9 10 11

e The Fibonacci series begins with 0 and 1, and each
subsequent number is the sum of the preceding two
numbers in the series.

e The series can be recursively defined as follows:
fib(0) = O;
fib(1) = 1;
fib(index) = fib(index - 2) + fib(index - 1); index >= 2



Recursion

Example: Fibonacci Numbers
< / |/

e The recursive algorithm for computing fib(index) can be

simply described as follows:
if (index == 0)
return O;
else if (index == 1)
return 1;
else
return fib(index - 1) + fib(index - 2);
e Example:
fib(3) = fib(2) + fib(1)
= (fib(1) + fib(0)) + fib(1)
= (1 + 0) + fib(1)
=1 + fib(1)
=1+1
=2



package chapter19,

import javax.swing JOptionPane;

/%% Main method %/
public static void main(String args[]) {

1
2
3
4
5 public class ComputeFibonacciRecursively |
6
7
g // Read the index

9 String intString = JOptionPane.show InputDialog(
10 "Enter an index for the Fibonacci number:');
11
12 // Convert string into integer
13 int index = Integer.parselnt(intString);
14
15 // Find and display the Fibonacci number
16 JOptionPane.showMessageDialog{null,
17 "Fibonacci number at index " + index + " is " + fib(index));
18 H
19

20  /**The method for finding the Fibonacci number */
21 public static long fib(long index) |

22 if (index == 0)// Stopping condition

23 return 0;

24 else if (index == 1) // Stopping condition
25 return I:

26 else // Reduction and recursive calls

27 return fib{index - 1) + fib(index - 2);
28}




Recursion

Example: Fibonacci Numbers

fik{d)

it nlurnl‘“ﬂ(:/_"* 4 F call (it d)

wrurs fb(E) + !'"'-I'I
10: gall il 2

1F fgturs G %) _'_'_‘_‘.A“Il —
'F f__—__l—ull fibi X} w;::l\-\\
r-.l:urru1|I:tIE:| 1|I:I-|:I:- I

T=refurn 1) = fi
'L' r fib( 2} & call i 1) 14; regurm fib{i)
fibi 12: call fibi 1}
O retsrs b1} IS retura ik}

Feturn I'||.'-I:I] v Tl return 1 I'l.l.ul'- i refurm

& FeEruen Tl 1 51wl i
Sl Tikd 1)
I 1 1 Felidd Mahd ) !

eglurm 1 egluenil

ik}

13 repois i




Recursion

Example: Fibonacci Numbers
|
e The recursive implementation of the fib method
IS very simple and straightforward, but not

efficient.

e The recursive fib method is a good example to
demonstrate how to write recursive methods,
though it is not practical.

e See ComputeFibonaccilteratively.java an
efficient solution using loops.



1 package chapterl9;

import javax.swing.JOptionPane;

2

3

4

5 public class ComputeFibonaccilteratively {

6  /** Main method */

7 public static void main(String args[]) {

8 // Read the index

9 String intString = JOptionPane.showInputDialog(

10 "Enter an index for the Fibonacci number: "),

11

12 // Convert string into integer

13 int index = Integer.parselnt(intString);

14

15 // Find and display the Fibonacci number

16 JOptionPane. showMessageDialog (null,

17 "Fibonacci number at index (Iteratively) " + index + " is "' + fib{index));
18 }

19

20  /** The method for finding the Fibonacci number */
21 public static long fib(int n) {
22 int f0 =10, fl = 1, currentFib;

23

24 if (n==0) return 0;
25 if (n==1)return 1;
26

27 for(inti=1:i<n;i++) |
28 currentFib = fO+11;
29 f0 =11

30 fl = currentFib:

31 }

32 return f1;

33 }

34 )




Recursion vs. lteration



Recursion

Recursion vs. lteration
- 0000007
e All recursive methods have the following
characteristics:

- The method is implemented using an if-else or a
switch statement that leads to different cases.

- One or more base cases (the simplest case) are
used to stop recursion.

— Every recursive call reduces the original problem,
bringing it increasingly closer to a base case until it
becomes that case.



Recursion

Recursion vs. lteration
-~

e In general, to solve a problem using recursion,
you break it into subproblems.

e If a subproblem resembles the original
problem, you can apply the same approach to
solve the subproblem recursively.

e This subproblem is almost the same as the
original problem in nature with a smaller size.



Recursion

Recursion vs. Iteration
<
e Both iteration and recursion use a control
statement
— lteration uses a repetition statement,
e e.g., for, while or do...while

-~ Recursion uses a selection statement
® e.9., if, if...else or switch



Recursion

Recursion vs. lteration
-~

e Both iteration and recursion involve repetition:
— lteration explicitly uses a repetition statement,
- Recursion achieves repetition through repeated
method calls.
e |teration and recursion both involve a
termination test

— lteration terminates when the loop-continuation
condition fails

— Recursion terminates when a base case is reached



Recursion

Recursion vs. lteration
|
e A recursive approach is normally preferred
over an iterative approach when:

- The recursive approach more naturally mirrors the
problem and results in a program that is easier to
understand and debug.

— A recursive approach can often be implemented
with fewer lines of code.



Recursion

Recursion vs. lteration
. 000000000000
e Any problem that can be solved recursively can
also be solved iteratively.

e Recursion can be expensive in terms of
processor time and memory space

e Avoid using recursion in situations requiring
high performance. Recursive calls take time
and consume additional memory.



References



Recursion

References
a ]

e Y. Daniel Liang, Introduction to Java
Programming, Sixth Edition,
Pearson Education, 2007. (Chapter 19)

e H. M. Deitel and P. J. Deitel, Java™ How to
Program, Sixth Edition, Prentice Hall, 2005.
(Chapter 15)







