
35. Data Structures

Java

Summer 2008

Instructor: Dr. Masoud Yaghini

Data Structures

Outline

� Introduction

� Lists

� Linked Lists

� Stacks� Stacks

� Queues

� Trees

� References

Introduction

Data Structures

What is a Data Structure?

� Data Structure

– A data structure is a collection of data organized in

some fashion.

– A data structure not only stores data, but also

supports the operations for accessing and supports the operations for accessing and

manipulating data in the structure.

Data Structures

Arrays

� An array is a data structure that holds a

collection of data in sequential order.

� You can find the size of the array, and store,

retrieve, and modify data in the array.

� Arrays are simple and easy to use, but they � Arrays are simple and easy to use, but they

have two limitations:

– (1) once an array is created, its size cannot be

altered;

– (2) an array does not provide adequate support for

insertion and deletion operations.

Data Structures

Classic Dynamic Data Structures

� Four classic dynamic data structures are

introduced in this chapter:

– linked lists,

– stacks,

– queues, and – queues, and

– trees.

Data Structures

Classic Dynamic Data Structures

� Linked lists

– are collections of data items "linked up in a

chain"insertions and deletions can be made

anywhere in a linked list.

� Stacks� Stacks

– are important in compilers and operating systems;

insertions and deletions are made only at one end

of a stackits top.

Data Structures

Classic Dynamic Data Structures

� Queues

– represent waiting lines; insertions are made at the

back (also referred to as the tail) of a queue and

deletions are made from the front (also referred to

as the head).

� Trees

– is a data structure that supports searching, sorting,

inserting, and deleting data efficiently.

Data Structures

Object-Oriented Data Structure

� In object-oriented thinking, a data structure is

an object that stores other objects, referred to

as data or elements.

� Some people refer to data structures as

container objects or collection objects. container objects or collection objects.

� To define a data structure is essentially to

declare a class.

� The class for a data structure should use data

fields to store data and provide methods to

support such operations as insertion and

deletion.

Data Structures

Object-Oriented Data Structure

� To create a data structure is therefore to create

an instance from the class.

� You can then apply the methods on the

instance to manipulate the data structure, such

as inserting an element into the data structure as inserting an element into the data structure

or deleting an element from the data structure.

Lists

Data Structures

Lists

� A list is a popular data structure for storing data in

sequential order.

� For example, a list of students, a list of available

rooms, a list of cities, and a list of books can all be

stored using lists.

The operations listed below are typical of most lists:� The operations listed below are typical of most lists:

– Retrieve an element from a list.

– Insert a new element to a list.

– Delete an element from a list.

– Find how many elements are in a list.

– Find whether an element is in a list.

– Find whether a list is empty.

Data Structures

Two Ways to Implement Lists

� There are two ways to implement a list.

– Using Arrays

� Arrays are dynamically created. If the capacity of the array
is exceeded, create a new, larger array and copy all the
elements from the current array to the new array.

– Using linked structures – Using linked structures

� A linked structure consists of nodes. Each node is
dynamically created to hold an element. All the nodes are
linked together to form a list.

Array Lists

Data Structures

Array Lists

� Array is a fixed-size data structure.

� Once an array is created, its size cannot be

changed.

� Nevertheless, you can still use arrays to

implement dynamic data structures. implement dynamic data structures.

� The trick is to create a larger new array to

replace the current array if the current array

cannot hold new elements in the list.

� This section shows how to use arrays to

implement MyArrayList.

Data Structures

Array Lists

� Initially, an array, say data of Object[] type, is

created with a default size. Each cell in the

array actually stores the reference of an object.

� When inserting a new element into the array,

first make sure that there is enough room in the first make sure that there is enough room in the

array.

� If not, create a new array twice as large as the

current one.

� Copy the elements from the current array to

the new array. The new array now becomes

the current array.

Data Structures

Inserting a new element to the array

� Before inserting a new element at a specified index,

shift all the elements after the index to the right and

increase the list size by 1.

Data Structures

Deleting an element from the array

� Deleting an element from the array requires that all the

elements after the deletion point be shifted one

position to the left and decrease the list size by 1

Data Structures

Array Lists

� Implementing array list

– MyArrayList

– TestList

Data Structures

Linked Lists

� Since MyArrayList is implemented using an

array, the following methods are efficient:

– get(int index) for accessing an element

– set(int index, Object o) for modifying an element

through an index, and through an index, and

– add(Object o) for adding an element at the end of

the list

� However, the methods:

– add(int index, Object o) and

– remove(int index)

– are inefficient because they require shifting a

potentially large number of elements.

Linked Lists

Data Structures

Linked Lists

� Linked list

– Linear collection of nodes

� Self-referential-class objects connected by reference links

� Can contain data of any type

– A program typically accesses a linked list via a – A program typically accesses a linked list via a

reference to the first node in the list

� A program accesses each subsequent node via the link
reference stored in the previous node

� The link reference in the last node is set to null to mark the
end of the list.

Data Structures

Linked Lists

� Linked Lists are dynamic

– The length of a list can increase or decrease as

necessary

– Become full only when the system has insufficient

memory to satisfy dynamic storage allocation memory to satisfy dynamic storage allocation

requests

� Stacks and queues are also linear data

structures and, as we will see, are constrained

versions of linked lists.

� Trees are non-linear data structures.

Data Structures

Performance Tip

� An array can be declared to contain more

elements than the number of items expected,

but this wastes memory.

� Linked lists provide better memory utilization in

these situations. these situations.

� Linked lists allow the program to adapt to

storage needs at runtime.

Data Structures

Performance Tip

� Insertion into a linked list is fast—only two

references have to be modified (after locating

the insertion point).

� All existing node objects remain at their current

locations in memory.locations in memory.

Data Structures

Performance Tip

� Insertion and deletion in a sorted array can be

time consuming

� All the elements following the inserted or

deleted element must be shifted appropriately.

Data Structures

Linked Lists

� Singly linked list

– Each node contains one reference to the next node

in the list

� Doubly linked list

– Each node contains a reference to the next node in – Each node contains a reference to the next node in

the list and a reference to the previous node in the

list

– java.util’s LinkedList class is a doubly linked

list implementation

Data Structures

Performance Tip

� Normally, the elements of an array are

contiguous in memory.

� This allows immediate access to any array

element, because its address can be

calculated directly as its offset from the calculated directly as its offset from the

beginning of the array.

� Linked lists do not afford such immediate

access to their elements

� An element can be accessed only by traversing

the list from the front (or from the back in a

doubly linked list).

Data Structures

Linked Lists

� Linked list graphical representation

Data Structures

TestLinkedList.java & List.Java

� The program of TestLinkedList.java uses an

object of List class in List.java to manipulate a

list of miscellaneous objects.

� List.java consists of two classes ListNode and

List .List .

� Encapsulated in each List object is a linked list

of ListNode objects.

– List.java

– TestLinkedList.java

Data Structures

TestLinkedLists.Java Output

The list is: 7

The list is: 11 7

The list is: 12 11 7

The list is: 12 11 7 5

12 removed

The list is: 11 7 5

5 removed

The list is: 11 7

Data Structures

Linked Lists

� Class ListNode declares package-access fields

data and nextNode.

� The data field is an Object reference, so it can

refer to any object.

� ListNode member nextNode stores a reference � ListNode member nextNode stores a reference

to the next ListNode object in the linked list (or

null if the node is the last one in the list).

Data Structures

Linked Lists

� Method main of class TestLinkedList

– inserts objects at the beginning of the list using

method insertAtFront,

– inserts objects at the end of the list using method

insertAtBack, insertAtBack,

– deletes objects from the front of the list using

method removeFromFront

– deletes objects from the end of the list using method

removeFromBack

Data Structures

Linked Lists

� Method insertAtFront’s steps

– Call isEmpty to determine whether the list is empty

– If the list is empty, assign firstNode and lastNode to

the new ListNode that was initialized with insertItem

� The ListNode constructor call sets data to refer to the � The ListNode constructor call sets data to refer to the
insertItem passed as an argument and sets reference
nextNode to null

– If the list is not empty, set firstNode to a new

ListNode object and initialize that object with

insertItem and firstNode

� The ListNode constructor call sets data to refer to the
insertItem passed as an argument and sets reference
nextNode to the ListNode passed as argument, which
previously was the first node

Data Structures

Linked Lists

� Graphical representation of operation insertAtFront

Data Structures

Linked Lists

� Method insertAtBack’s steps

– Call isEmpty to determine whether the list is empty

– If the list is empty, assign firstNode and lastNode to

the new ListNode that was initialized with insertItem

� The ListNode constructor call sets data to refer to the � The ListNode constructor call sets data to refer to the
insertItem passed as an argument and sets reference
nextNode to null

– If the list is not empty, assign to lastNode and

lastNode.nextNode the reference to the new

ListNode that was initialized with insertItem

� The ListNode constructor sets data to refer to the
insertItem passed as an argument and sets reference
nextNode to null

Data Structures

Linked Lists

� Graphical representation of operation insertAtBack

Data Structures

Linked Lists

� Method removeFromFront’s steps

– Throw an EmptyListException if the list is empty

– Assign firstNode.data to reference removedItem

– If firstNode and lastNode refer to the same object, it

means there is only one node in list, set firstNodemeans there is only one node in list, set firstNode

and lastNode to null

– If the list has more than one node, assign the value

of firstNode.nextNode to firstNode

– Return the removedItem reference

Data Structures

Linked Lists

� Graphical representation of operation

removeFromFront

Data Structures

Linked Lists

� Method removeFromBack’s steps

– Assign lastNode.data to removedItem

– If the firstNode and lastNode refer to the same

object, set firstNode and lastNode to null

– If the list has more than one node, create the – If the list has more than one node, create the

ListNode reference current and assign it firstNode

– “Walk the list” with current until it references the

node before the last node

� The while loop assigns current.nextNode to current as long
as current.nextNode is not lastNode

– Assign current to lastNode

– Set current.nextNode to null

– Return the removedItem reference

Data Structures

Linked Lists

� Graphical representation of operation
removeFromBack

Stacks

Data Structures

Stacks

� Stacks
– A stack is a constrained version of a linked list

– The link member in the bottom (i.e., last) node of the

stack is set to null to indicate the bottom of the stack.

– Last-in, first-out (LIFO) data structure

� Method push adds a new node to the top of the stack

� Method pop removes a node from the top of the stack and
returns the data from the popped node

– Program execution stack

� Holds the return addresses of calling methods

� Also contains the local variables for called methods

Data Structures

Stacks

� The StackInheritance class that inherits from

List

– Stack methods push, pop, isEmpty and print are

performed by inherited methods insertAtFront,

removeFromFront, isEmpty and printremoveFromFront, isEmpty and print

� push calls insertAtFront

� pop calls removeFromFront

� isEmpty and print can be called as inherited

– Other List methods are also inherited

� Including methods that should not be in the stack class’s
public interface

Data Structures

Stacks

� The programs:

– StackInheritance.java

– QueueTest.java

Data Structures

Stacks

� Class StackInheritanceTest's method main creates an

object of class StackInheritance called stack.

� The program output:

The stack is: -1

The stack is: 0 -1 The stack is: 0 -1

The stack is: 1 0 -1

The stack is: 5 1 0 -1

5 popped

The stack is: 1 0 -1

1 popped

The stack is: 0 -1

Queues

Data Structures

Queues

� Queue

– Similar to a checkout line in a supermarket

– First-in, first-out (FIFO) data structure

� Enqueue inserts nodes at the tail (or end)

� Dequeue removes nodes from the head (or front)� Dequeue removes nodes from the head (or front)

– Used to support print spooling

� A spooler program manages the queue of printing jobs

Data Structures

Queues

� Queue class that contains a reference to a List

– Method enqueue calls List method insertAtBack

– Method dequeue calls List method

removeFromFront

– Method isEmpty calls List method isEmpty– Method isEmpty calls List method isEmpty

– Method print calls List method print

� The programs:

– QueueInheritance .java

– QueueInheritanceTest.java

Data Structures

Queues

� The program output:
The queue is: -1

The queue is: -1 0

The queue is: -1 0 1

The queue is: -1 0 1 5

-1 dequeued-1 dequeued

The queue is: 0 1 5

0 dequeued

The queue is: 1 5

Trees

Data Structures

Trees

� Trees

– The root node is the first node in a tree

– Tree nodes contain two or more links

– The children of a specific node are called siblings.

– A leaf node has no children– A leaf node has no children

� Binary trees

– Trees whose nodes each contain two links (one or

both of which may be null).

– Each link refers to a child

� Left child is the root of the left subtree

� Right child is the root of the right subtree

Data Structures

Trees

� Binary tree graphical representation:

Data Structures

Trees

� Binary search trees

– Values in the left subtree are less than the value in

that subtree’s parent node and values in the right

subtree are greater than the value in that subtree’s

parent node

Data Structures

Trees

� The programs:

– TreeTest.java

– Tree.java

Data Structures

Trees

� Class Tree's method insertNode first determines

whether the tree is empty.

� If so, it allocates a new TreeNode, initializes the node

with the integer being inserted in the tree and assigns

the new node to reference root.

If the tree is not empty, it calls TreeNode method � If the tree is not empty, it calls TreeNode method

insert.

� This method uses recursion to determine the location

for the new node in the tree and inserts the node at

that location.

� A node can be inserted only as a leaf node in a binary

search tree.

Data Structures

Trees

� Traversing a tree

– Inorder - traverse left subtree, then process root,

then traverse right subtree

– Preorder - process root, then traverse left subtree,

then traverse right subtreethen traverse right subtree

– Postorder - traverse left subtree, then traverse right

subtree, then process root

Data Structures

Trees

� Inorder traversal steps:

– Return immediately if the reference parameter is

null

– Traverse the left subtree with a call to inorderHelper

– Process the value in the root node– Process the value in the root node

– Traverse the right subtree with a call to

inorderHelper

� Binary tree sort:

– The inorder traversal of a binary search tree prints

the node values in ascending order

Data Structures

Trees

� The inorder traversal of the tree:

6 13 17 27 33 42 48

Data Structures

Trees

� Preorder traversal steps

– Return immediately if the reference parameter is

null

– Process the value in the root node

– Traverse the left subtree with a call to – Traverse the left subtree with a call to

preorderHelper

– Traverse the right subtree with a call to

preorderHelper

Data Structures

Trees

� The preorder traversal of the tree:

27 13 6 17 42 33 48

Data Structures

Trees

� Postorder traversal steps

– Return immediately if the reference parameter is

null

– Traverse the left subtree with a call to

postorderHelperpostorderHelper

– Traverse the right subtree with a call to

postorderHelper

– Process the value in the root node

Data Structures

Trees

� The postorderTraversal of the tree:

6 17 13 33 48 42 27

Data Structures

Trees

� Duplicate elimination

– Because duplicate values follow the same “go left”

or “go right” decisions, the insertion operation

eventually compares the duplicate with a same-

valued node

– The duplicate can then be ignored

� Tightly packed (or balanced) trees

– Each level contains about twice as many elements

as the previous level

References

Data Structures

References

� H. M. Deitel and P. J. Deitel, Java™ How to
Program, Sixth Edition, Prentice Hall, 2005.

(Chapter 17)

The End

