
36. Collections

Java

Summer 2008

Instructor: Dr. Masoud Yaghini

Collections

Outline

� Introduction

� Arrays Class

� Interface Collection and Class Collections

� ArrayList Class

� Generics� Generics

� LinkedList Class

� Collections Algorithms

� Stack Class

� Class PriorityQueue and Interface Queue

� Sets Class

� Maps Class

� References

Introduction

Collections

Introduction

� Java collections framework

– Contain prepackaged data structures, interfaces,

algorithms for manipulating those data structures

– With collections, programmers use existing data

structures, without concern for how they are structures, without concern for how they are

implemented.

– This is a example of code reuse.

– Programmers can code faster and can expect

excellent performance, maximizing execution speed

and minimizing memory consumption.

Collections

Introduction

� Collection

– Data structure (object) that can hold references to

other objects

� Collections framework

– Interfaces declare operations for various collection – Interfaces declare operations for various collection

types

– Provide high-performance, high-quality

implementations of common data structures

– Enable software reuse

Collections

Some collection framework interfaces

� Collection

– The root interface in the collections hierarchy from which
interfaces Set, Queue and List are derived.

� Set

– A collection that does not contain duplicates.

� List� List

– An ordered collection that can contain duplicate elements.

� Map

– Associates keys to values and cannot contain duplicate keys.

� Queue

– Typically a first-in, first-out collection that models a waiting line;
other orders can be specified.

Arrays Class

Collections

Class Arrays

� Class Arrays

– Provides static methods for manipulating arrays

– Provides “high-level” methods

� Method binarySearch for searching sorted arrays

� Method equals for comparing arrays� Method equals for comparing arrays

� Method fill for placing values into arrays

� Method sort for sorting arrays

Collections

Class Arrays

� The program:

– UsingArrays.java demonstrates methods fill, sort,

binarySearch and equals.

– Method main creates a UsingArrays object and

invokes its methods.invokes its methods.

Collections

Class Arrays

� The program output:

doubleArray: 0.2 3.4 7.9 8.4 9.3

intArray: 1 2 3 4 5 6

filledIntArray: 7 7 7 7 7 7 7 7 7 7

intArrayCopy: 1 2 3 4 5 6 intArrayCopy: 1 2 3 4 5 6

intArray == intArrayCopy

intArray != filledIntArray

Found 5 at element 4 in intArray

8763 not found in intArray

Collections

Common Programming Error

� Passing an unsorted array to binarySearch is a

logic error—the value returned is undefined.

Interface Collection and Class
Collections

Collections

Interface Collection

� Interface Collection

– Root interface in the collection hierarchy

– Interfaces Set, Queue, List extend interface

Collection

� List – ordered collection can contain duplicate elements

Interface Collection and Class Collections

� List – ordered collection can contain duplicate elements

� Set – collection does not contain duplicates

� Queue – collection represents a waiting line

– Contains bulk operations

� Adding, clearing, comparing and retaining objects

– Provide method to return an Iterator object

� Walk through collection and remove elements from
collection

Collections

Iterator

� It is common in object-oriented programming to declare

an iterator class that can traverse all the objects in a

collection, such as an array or an ArrayList.

� For example, a program can print an ArrayList of

objects by creating an iterator object and using it to

obtain the next list element each time the iterator is obtain the next list element each time the iterator is

called.

� Iterators often are used in polymorphic programming to

traverse a collection that contains references to objects

from various levels of a hierarchy.

Collections

Class Collections

� Class Collections

– Provides static methods that manipulate collections

� Implement algorithms for searching, sorting and so on

– Collections can be manipulated polymorphically

ArrayList Class

Collections

Lists

� List

– A list is an ordered Collection that can contain

duplicate elements

– Sometimes called a sequence

– List indices are zero based (i.e., the first element's – List indices are zero based (i.e., the first element's

index is zero)

– Classes

� ArrayList: is resizable-array

� LinkedList : is resizable-array

Collections

Lists

� ArrayListTest.java

– Demonstrate Collection interface capabilities

– Place two String arrays in ArrayLists

– Use Iterator to remove elements in ArrayList

� The program output:
ArrayList:

MAGENTA RED WHITE BLUE CYAN

ArrayList after calling removeColors:

MAGENTA CYAN

Collections

Common Programming Error

� If a collection is modified by one of its methods

after an iterator is created for that collection,

the iterator immediately becomes invalid—any

operations performed with the iterator after this

point throw ConcurrentModificationExceptions. point throw ConcurrentModificationExceptions.

� For this reason, iterators are said to be “fail

fast.”

Generics

Collections

Overloaded methods

� Overloaded methods

– Perform similar operations on different types of data

– For example an overloaded methods

� Integer array

� Double array� Double array

� Character array

Collections

Generics

� It would be nice if we could write a single sort

method that could sort the elements in an

Integer array, a String array or an array of any

type that supports ordering (i.e., its elements

can be compared). can be compared).

� It would also be nice if we could write a single

Stack class that could be used as a Stack of

integers, a Stack of floating-point numbers, a

Stack of Strings or a Stack of any other type.

Collections

Generics

� It would be even nicer if we could detect type

mismatches at compile timeknown as compile-

time type safety.

� For example, if a Stack stores only integers,

attempting to push a String on to that Stack attempting to push a String on to that Stack

should issue a compile-time error.

� Generics provides the means to create the

general models mentioned above.

Collections

Generics

� Generics

– Provide compile-time type safety

� Catch invalid types at compile time

– Generic methods

� A single method declaration� A single method declaration

– Generic classes

� A single class declaration

Collections

Generics

� Note that ArrayList is a generic class, so we

are able to specify a type argument (String in

this case) to indicate the type of the elements

in each list.

� ArrayListTest2.java

– Demonstrates how to specify a type argument for

generic ArrayList class

LinkedList Class

Collections

LinkedList

� LinkedLists can be used to create stacks,

queues, trees and deques (double-ended

queues, pronounced “decks”).

� The collections framework provides

implementations of some of these data implementations of some of these data

structures.

Collections

LinkedList

� ListTest.java

– The program creates two LinkedLists that contain

Strings.

– The elements of one List are added to the other.

– Then all the Strings are converted to uppercase, – Then all the Strings are converted to uppercase,

and

– a range of elements is deleted

Collections

LinkedList

� The program output:

list1:

black yellow green blue violet silver gold white brown blue gray silver

list1:

BLACK YELLOW GREEN BLUE VIOLET SILVER GOLD WHITE

BROWN BLUE GRAY SILVER BROWN BLUE GRAY SILVER

Deleting elements 4 to 6...

list1:

BLACK YELLOW GREEN BLUE WHITE BROWN BLUE GRAY SILVER

Reversed List:

SILVER GRAY BLUE BROWN WHITE BLUE GREEN YELLOW BLACK

Collections

LinkedList

� static method asList of class Arrays

– View an array as a List collection

– Allow programmer to manipulate the array as if it

were a list

– Any modification made through the List view – Any modification made through the List view

change the array

– Any modification made to the array change the
List view

Collections

LinkedList

� UsingToArray.java

– The program calls method asList to create a List

view of an array, which is then used for creating a

LinkedList object,

– adds a series of strings to a LinkedList and – adds a series of strings to a LinkedList and

– calls method toArray to obtain an array containing

references to the strings.

– Notice that the instantiation of LinkedList indicates

that LinkedList is a generic class that accepts one

type argumentString, in this example.

Collections

LinkedList

� The program output:

colors:

cyan

black

blueblue

yellow

green

red

pink

Collections

Common Programming Error

� If the number of elements in the array is

smaller than the number of elements in the list

on which toArray is called, a new array is

allocated to store the list’s elements

� If the number of elements in the array is � If the number of elements in the array is

greater than the number of elements in the list,

the elements of the array (starting at index

zero) are overwritten with the list’s elements.

Array elements that are not overwritten retain

their values.

Collections Algorithms

Collections

Collections Algorithms

� Collections framework provides set of algorithms,

implemented as static methods

� Algorithms operate on List :

– sort
� Sorts the elements of a List.

– binarySearch– binarySearch
� Locates an object in a List.

– reverse
� Reverses the elements of a List.

– shuffle
� Randomly orders a List's elements.

– fill
� Sets every List element to refer to a specified object.

– copy

� Copies references from one List into another.

Collections

Collections Algorithms

� Algorithms operate on any Collections:

– min

� Returns the smallest element in a Collection.

– max

� Returns the largest element in a Collection.

– addAll– addAll

� Appends all elements in an array to a collection.

– frequency

� Calculates how many elements in the collection are equal
to the specified element.

– disjoint

� Determines whether two collections have no elements in
common.

Collections

Algorithm sort

� sort

– Sorts List elements

� Order is determined by natural order of elements’ type

� List elements must implement the Comparable interface

� Or, pass a Comparator to method sort

� Sorting in ascending order

– Collections method sort

� Sorting in descending order

– Collections static method reverseOrder

� Sorting with a Comparator

– Create a custom Comparator class

Collections

Algorithm sort

� Sort1.java

– uses algorithm sort to order the elements of a List in

ascending order.

– Recall that List is a generic type and accepts one

type argument that specifies the list element typetype argument that specifies the list element type

Collections

Algorithm sort

� The program output:

Unsorted array elements:

[Hearts, Diamonds, Clubs, Spades]

Sorted array elements:

[Clubs, Diamonds, Hearts, Spades][Clubs, Diamonds, Hearts, Spades]

Collections

Sorting in Descending Order

� Sort2.java

– sorts the same list of strings in descending order.

– The example introduces the Comparator interface,

which is used for sorting a Collection's elements in a

different order. different order.

– The static Collections method reverseOrder returns

a Comparator object that orders the collection's

elements in reverse order.

Collections

Sorting in Descending Order

� The program output:

Unsorted array elements:

[Hearts, Diamonds, Clubs, Spades]

Sorted list elements:

[Spades, Hearts, Diamonds, Clubs][Spades, Hearts, Diamonds, Clubs]

Collections

Algorithm shuffle

� shuffle

– Randomly orders List elements

� ShuffleTest.java

In this program we use algorithm shuffle to shuffle a – In this program we use algorithm shuffle to shuffle a

deck of Card objects that might be used in a card

game simulator.

Collections

Collections Algorithms

� The program output:

Array elements:

[Hearts, Diamonds, Clubs, Spades]

Shuffled list elements:

[Spades, Clubs, Diamonds, Hearts][Spades, Clubs, Diamonds, Hearts]

Collections

Algorithm reverse, fill, copy, max and min

� reverse

– Reverses the order of List elements

� Fill

– Overwrites elements in a List with a specified value.

– The fill operation is useful for reinitializing a List.

copy� copy

– Creates copy of a List

– takes two arguments a destination List and a source List

– Each source List element is copied to the destination List

– The destination List must be at least as long as the source
List; otherwise, an IndexOutOfBoundsException occurs.

– If the destination List is longer, the elements not overwritten

Collections

Algorithm reverse, fill, copy, max and min

� max

– Returns largest element in List

– Operate on any Collection

� min

– Returns smallest element in List– Returns smallest element in List

– Operate on any Collection

� Algorithms1.java

– demonstrates the use of algorithms reverse, fill,

copy, min and max. Note that the generic type List

is declared to store Characters.

Collections

Algorithm reverse, fill, copy, max and min

� The program output:
Initial list:

The list is: P C M

Max: P Min: C

After calling reverse:

The list is: M C P

Max: P Min: C

After copying:

The list is: M C P

Max: P Min: C

After calling fill:

The list is: R R R

Max: R Min: R

Collections

Algorithm binarySearch

� The binarySearch algorithm locates an object in a List

(i.e., a LinkedList or an ArrayList).

� If the object is found, its index is returned. If the object

is not found, binarySearch returns a negative value.

� Algorithm binarySearch determines this negative value

by first calculating the insertion point and making its by first calculating the insertion point and making its

sign negative.

� Then, binarySearch subtracts 1 from the insertion point

to obtain the return value, which guarantees that

method binarySearch returns positive numbers (>=0) if

and only if the object is found.

Collections

Algorithm binarySearch

� If multiple elements in the list match the search

key, there is no guarantee which one will be

located first.

� BinarySearchTest.java uses the binarySearch

algorithm to search for a series of strings in an algorithm to search for a series of strings in an

ArrayList.

Collections

Algorithm binarySearch

� The program output:
Sorted list: [black, blue, pink, purple, red, tan, white, yellow]

Searching for: black

Found at index 0

Searching for: red

Found at index 4Found at index 4

Searching for: pink

Found at index 2

Searching for: aqua

Not Found (-1)

Searching for: gray

Not Found (-3)

Searching for: teal

Not Found (-7)

Collections

Algorithms addAll, frequency and disjoint

� addAll
– Insert all elements of an array into a collection

– Takes two arguments, a Collection into which to insert the new
element(s) and an array that provides elements to be inserted

� frequency
– Calculate the number of times a specific element appear in the

collection

– Takes two arguments a Collection to be searched and an
Object to be searched for in the collection

� Disjoint
– Algorithm disjoint takes two Collections and returns true if they

have no elements in common

Collections

Algorithms addAll, frequency and disjoint

� Algorithms2.java

– demonstrates the use of algorithms addAll,

frequency and disjoint.

Collections

Algorithms addAll, frequency and disjoint

� The program output:

Before addAll, list2 contains:

black red green

After addAll, list2 contains: After addAll, list2 contains:

black red green red white yellow blue

Frequency of red in list2: 2

list1 and list2 have elements in common

Stack Class

Collections

Stack Class

� Stack class in the Java utilities package

java.util implements stack data structure

� Class Stack stores references to objects

� Autoboxing occurs when you add a primitive

type to a Stacktype to a Stack

� Class Stack extends class Vector to implement

a stack data structure.

� StackTest.java

– demonstrates several Stack methods.

Collections

Stack Class

� The program output:
stack contains: 12 (top)

stack contains: 12 34567 (top)

stack contains: 12 34567 1.0 (top) stack contains: 12 34567 1.0 (top)

stack contains: 12 34567 1.0 1234.5678 (top)

1234.5678 popped

stack contains: 12 34567 1.0 (top)

1.0 popped

stack contains: 12 34567 (top)

Collections

Stack Class

� The constructor creates an empty Stack of type

Number.

� Class Number (in package java.lang) is the

superclass of most wrapper classes (e.g.,

Integer, Double) for the primitive types. Integer, Double) for the primitive types.

� By creating a Stack of Number, objects of any

class that extends the Number class can be

pushed onto the stack.

Collections

Stack Class

� Any integer literal that has the suffix L is a long

value.

� An integer literal without a suffix is an int value.

� Similarly, any floating-point literal that has the

suffix F is a float value. suffix F is a float value.

� A floating-point literal without a suffix is a

double value.

Collections

Stack Class

� Because Stack extends Vector, all public

Vector methods can be called on Stack

objects, even if the methods do not represent

conventional stack operations.

� For example, Vector method add can be used � For example, Vector method add can be used

to insert an element anywhere in a stack—an

operation that could “corrupt” the stack.

� When manipulating a Stack, only methods

push and pop should be used to add elements

to and remove elements from the Stack,

respectively.

Class PriorityQueue and
Interface Queue

Collections

Class PriorityQueue and Interface Queue

� Interface Queue,

– extends interface Collection and provides additional

operations for inserting, removing and inspecting

elements in a queue.

� Class PriorityQueue, � Class PriorityQueue,

– one of the classes that implements the Queue

interface, orders elements by their natural ordering

– When adding elements to a PriorityQueue, the

elements are inserted in priority order such that the

highest-priority element (i.e., the largest value) will

be the first element removed from the

PriorityQueue.

Collections

Class PriorityQueue and Interface Queue

� The common PriorityQueue operations are
– offer to insert an element at the appropriate location

based on priority order
� Method offer throws a NullPointException if the program attempts to add a

null object to the queue.

– poll to remove the highest-priority element of the priority – poll to remove the highest-priority element of the priority

queue (i.e., the head of the queue),

– peek to get a reference to the highest-priority element of

the priority queue (without removing that element),

– clear to remove all elements in the priority queue and

– size to get the number of elements in the priority queue.

Collections

Class PriorityQueue and Interface Queue

� PriorityQueueTest.java

– demonstrates the PriorityQueue class.

� The program output:

Polling from queue: 3.2 5.4 9.8Polling from queue: 3.2 5.4 9.8

Sets Class

Collections

Sets Class

� A Set is a Collection that contains unique

elements (i.e., no duplicate elements),

including:

– HashSet

� Stores elements in hash table� Stores elements in hash table

– TreeSet

� Stores elements in tree

Collections

Sets Class

� SetTest.java

– Recall that both List and Collection are generic

types, so this program creates a List that contains

String objects, and

– It passes a Collection of Strings to method – It passes a Collection of Strings to method

printNonDuplicates.

� The program output:
ArrayList: [red, white, blue, green, gray, orange, tan, white, cyan,

peach, gray, orange]

Nonduplicates are:

orange green white peach gray cyan red blue tan

Collections

Sets Class

� The collections framework also includes

interface SortedSet (which extends Set) for

sets that maintain their elements in sorted

order either the elements' natural order (e.g.,

numbers are in ascending order) or an order numbers are in ascending order) or an order

specified by a Comparator.

� Class treeSet implements SortedSet.

Maps Class

Collections

Maps Class

� Maps associate keys to values

� Maps cannot contain duplicate keys, i.e., each

key can map to only one value; this is called

one-to-one mapping.

� Maps differ from Sets in that Maps contain � Maps differ from Sets in that Maps contain

keys and values, whereas Sets contain only

values.

Collections

Maps Class

� Three of the several classes that implement

interface Map are:

– Hashtable

� store elements in hash tables

– HashMap– HashMap

� store elements in hash tables

– TreeMap

� Store elements in trees

� This section discusses hash tables and

provides an example that uses a HashMap to

store key/value pairs.

Collections

Maps Class

� Interface SortedMap extends Map and

maintains its keys in sorted order either the

elements' natural order or an order specified by

a Comparator.

� Class TreeMap implements SortedMap.� Class TreeMap implements SortedMap.

Collections

Maps Class

� Map implementation with hash tables

– Hash tables

� Data structure that use hashing (convert a key into an array
index)

� Algorithm for determining a key in table

Keys in tables have associated values (data)� Keys in tables have associated values (data)

Collections

Maps Class

� WordTypeCount.java

– uses a HashMap to count the number of

occurrences of each word in a string.

Collections

Maps Class

� The program Output:
Enter a string:

To be or not to be: that is the question

Map contains:

Key Value

be 1

be: 1be: 1

is 1

not 1

or 1

question 1

that 1

the 1

to 2

size:9

isEmpty:false

References

Collections

References

� H. M. Deitel and P. J. Deitel, Java™ How to

Program, Sixth Edition, Prentice Hall, 2005.

(Chapter 19)

The End

