Data Mining

1.3 Input

Fall 2008

Instructor: Dr. Masoud Yaghini

Outline

- Instances
- Attributes
- References

Instances

Instances

Instance:

- Individual, independent example of the concept to be learned.
- Characterized by a predetermined set of attributes
- Input to learning process: set of instances/dataset
- Each dataset is represented as a matrix of instances versus attributes
 - Represented as a single table or flat file
- Rather restricted form of input
 - No relationships between objects

Instances

 Problems often involve relationships between objects rather than separate, independent instances.

• Example:

- a family tree is given, and we want to learn the concept sister.
- This tree is the input to the learning process, along with a list of pairs of people and an indication of whether they are sisters or not.

An example: A family tree

Two ways of expressing the sister-of relation

first	second	sister
person	person	of?
Peter	Peggy	no
Peter	Steven	no
Steven	Peter	no
Steven	Graham	no
Steven	Pam	yes
Steven	Grace	no
lan	Pippa	yes
Anna	Nikki	yes
Nikki	Anna	yes

Steven Pam yes Graham Pam yes lan Pippa yes Brian Pippa yes Anna Nikki yes Nikki Anna yes	Steven Pam yes Graham Pam yes lan Pippa yes Brian Pippa yes Anna Nikki yes	Steven Pam ye Graham Pam ye Ian Pippa ye Brian Pippa ye Anna Nikki ye Nikki Anna ye	first	second	sister
Graham Pam yes lan Pippa yes Brian Pippa yes Anna Nikki yes Nikki Anna yes	Graham Pam yes lan Pippa yes Brian Pippa yes Anna Nikki yes Nikki Anna yes	Graham Pam ye lan Pippa ye Brian Pippa ye Anna Nikki ye Nikki Anna ye	person	person	of?
lan Pippa yes Brian Pippa yes Anna Nikki yes Nikki Anna yes	lan Pippa yes Brian Pippa yes Anna Nikki yes Nikki Anna yes	lan Pippa ye Brian Pippa ye Anna Nikki ye Nikki Anna ye	Steven	Pam	yes
Brian Pippa yes Anna Nikki yes Nikki Anna yes	Brian Pippa yes Anna Nikki yes Nikki Anna yes	Brian Pippa ye Anna Nikki ye Nikki Anna ye	Graham	Pam	yes
Anna Nikki yes Nikki Anna yes	Anna Nikki yes Nikki Anna yes	Anna Nikki ye Nikki Anna ye	lan	Pippa	yes
Nikki Anna yes	Nikki Anna yes	Nikki Anna y	Brian	Pippa	yes
,	,	,	Anna	Nikki	yes
A // 4/5 = 4 DO	All the rest no	All the rest n	Nikki	Anna	yes
All the rest			All th	e rest	no

Neither table is of any use without the family tree itself.

Family tree represented as a table

Name	Gender	Parent1	Parent2
Peter	male	?	?
Peggy	female	?	?
Steven	male	Peter	Peggy
Graham	male	Peter	Peggy
Pam	female	Peter	Peggy
lan	male	Grace	Ray

 These tables do not contain independent sets of instances because values in the Name, Parent1, and Parent2 columns refer to rows of the family tree relation.

The sister-of relation represented in a table

First person		Second person						
Name	Gender	Parent1	Parent2	Name	Gender	Parent1	Parent2	Sister of?
Steven Graham Ian Brian Anna Nikki	male male male male female female	Peter Peter Grace Grace Pam Pam	Peggy Peggy Ray Ray Ian Ian	Pam Pam Pippa Pippa Nikki Anna	female female female female female female	Peter Peter Grace Grace Pam Pam	Peggy Peggy Ray Ray Ian Ian	yes yes yes yes yes
all the rest					no			

• Each of instance is an individual, independent example of the concept that is to be learned.

A simple rule for the sister-of relation

 A simple rule for the sister-of relation is as follows:

```
If second person's gender = female
and first person's parent1 = second person's parent1
then sister-of = yes
```

Denormalization

Denormalization or flattening:

- Several relations are joined together to make one
- to recast data into a set of independent instances
- Possible with any finite set of finite relations
- Problems:
 - Relationships without prespecified number of objects
 - Example: concept of nuclearfamily
 - Denormalization may produce false regularities that reflect structure of database
 - Example: "supplier" predicts "supplier address"

Summary

- The input to a data mining scheme is generally expressed as a table of independent instances of the concept to be learned.
- The instances are the rows of the tables the attributes are the columns.

Attributes

Attributes

 Each instance is described by a fixed predefined set of features or attributes

- Problem: Number of attributes may vary in different instances
 - Example: the instances were transportation vehicles
 - Possible solution: to make each possible feature an attribute and to use a special flag value to indicate that a particular attribute is not available for a particular case.

Attributes

- Another problem: existence of an attribute may depend of value of another one
 - Spouse's name depends on the value of married or single attribute

Attributes Types

- Possible attribute types ("levels of measurement"):
 - Nominal
 - ordinal
 - interval
 - ratio

Nominal quantities

- Nominal attributes take on values in a prespecified, finite set of possibilities and are sometimes called categorical.
- Nominal quantities values are distinct symbols
 - Values themselves serve only as labels or names
- Example: attribute "outlook" from weather data
 - Values: "sunny", "overcast", and "rainy"
- No relation is implied among nominal values (no ordering or distance measure)

Nominal quantities

- Note: addition, subtraction, and comparing don't make sense
- Only equality tests can be performed
 - Example:

```
outlook: sunny \rightarrow no overcast \rightarrow yes rainy \rightarrow yes
```

Ordinal quantities

- Ordinal quantities are ones that make it possible to rank order the categories.
- But: no distance between values defined
- Example: attribute "temperature" in weather data
 - Values: "hot" > "mild" > "cool"
- Note: it makes sense to compare two values, but addition and subtraction don't make sense
- Example rule:
 - temperature < hot => play = yes
- Distinction between nominal and ordinal not always clear (e.g. attribute "outlook")

Interval quantities

- Interval quantities are not only ordered but measured in fixed and equal units
- Example 1: attribute "temperature" expressed in degrees Fahrenheit
- Example 2: attribute "date" (year)
- Difference of two values makes sense
- Sum or multiplication doesn't make sense
 - E.g. sum of the years 1939 and 1945 (3884)
 - Or, three times the year 1939 (5817)
- Zero point is not defined!
 - Example: the year 300

Ratio quantities

- Ratio quantities are ones for which the measurement method defines a zero point
- Example: attribute "distance"
 - Distance between an object and itself is zero
 - It does make sense to talk about three times the distance and even to multiply one distance by another to get an area.
- Ratio quantities are treated as real numbers
 - All mathematical operations are allowed

Attribute types used in practice

- Most data mining processes accommodate just two levels of measurement:
 - Nominal
 - Ordinal
- Nominal attributes are also called "categorical", "enumerated", or "discrete"
 - Enumerated is the standard term used in computer science to denote a categorical data type
 - But: "enumerated" and "discrete" imply order
 - Special case: "boolean" attribute
 - Example: true/false or yes / no

Attribute types used in practice

 Ordinal attributes are generally called numeric.

References

References

Ian H. Witten and Eibe Frank, Data Mining:
 Practical Machine Learning Tools and Techniques, 2nd Edition, Elsevier Inc., 2005.

 (Chapter 2)

The end