Data Mining

2.3 Data Cleaning

Fall 2008

Instructor: Dr. Masoud Yaghini

Outline

- Introduction
- Missing Values
- Outliers
- Inconsistent and Duplicate Data
- References

Introduction

- Real-world data tend to be incomplete, noisy, and inconsistent.
- Data cleaning tasks
 - Handle missing values
 - Detect and remove outliers
 - Correct inconsistent data
 - Remove duplicate data
- In this section, you will study basic methods for data cleaning.

- Incorrect attribute values may due to
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
 - technology limitation
 - inconsistency in naming convention
- Other data problems which requires data cleaning
 - duplicate records
 - incomplete data
 - inconsistent data

Missing Values

Missing Values

• Data is not always available

- E.g., many instances have no recorded value for several attributes, such as customer income in sales data
- Missing data may be due to:
 - equipment malfunction
 - inconsistent with other recorded data and thus deleted
 - data not entered due to misunderstanding
 - certain data may not be considered important at the time of entry
 - not register history or changes of the data
- Missing data may need to be inferred.

• Ignore the instance

- usually done when class label is missing (assuming the tasks in classification)
- not effective when the percentage of missing values per attribute varies considerably.

• Fill in the missing value manually

 this approach is time-consuming and may not be feasible given a large data set with many missing values.

• Use a global constant to fill in the missing value

- Replace all missing attribute values by the same constant, such as a label like "Unknown"
- the mining program may mistakenly think that they form an interesting concept, since they all have a value in common—that of "Unknown."

• Use the attribute mean to fill in the missing value

- For example, suppose that the average income of *AllElectronics* customers is \$56,000.
- Use this value to replace the missing value for *income*.

• Use the attribute mean for all samples belonging to the same class

- For example, if classifying customers according to *credit_risk*, replace the missing value with the average *income* value for customers in the same credit risk category.
- Use the most probable value to fill in the missing value
 - This may be determined with regression, inference-based tools using a Bayesian formalism, or decision tree.
 - For example, using the other customer attributes in your data set, you may construct a decision tree to predict the missing values for *income*..

- Use the most probable value to fill in the missing value is a popular strategy.
- In comparison to the other methods, it uses the most information from the present data to predict missing values.

• Outliers

Outliers are data instances with characteristics that are considerably different than most of the other data instances in the data set

• Outliers may be detected by clustering, where similar values are organized into groups, or "clusters."

- A 2-D plot of customer data with respect to customer locations in a city, showing three data clusters.
- Each cluster centroid is marked with a "+", representing the average point in space for that cluster.
- Outliers may be detected as values that fall outside of the sets of clusters.

Inconsistent and Duplicate Data

Inconsistent

• Inconsistent: containing discrepancies in codes or names

- e.g., Age="42" Birthday="03/07/1997"
- e.g., Was rating "1,2,3", now rating "A, B, C"
- e.g., discrepancy between duplicate records

Duplicate Data

Duplicate Data

• Data set may include data instances that are duplicates, or almost duplicates of one another

- Major issue when merging data from different sources

• Data cleaning

- Process of dealing with duplicate data issues

References

References

• J. Han, M. Kamber, **Data Mining: Concepts and Techniques**, Elsevier Inc. (2006). (Chapter 2)

The end