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Generation for Numerical Data



Data Discretization

� Data Discretization: 

– Dividing the range of a continuous attribute into intervals

– Interval labels can then be used to replace actual data values

– Reduce the number of values for a given continuous 

attribute

– Some classification algorithms only accept categorical 
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– Some classification algorithms only accept categorical 

attributes.

– This leads to a concise, easy-to-use, knowledge-level 

representation of mining results.



Data Discretization

� Discretization techniques can be categorized based on 

whether it uses class information, as:

– Supervised discretization

� the discretization process uses class information

– Unsupervised discretization

� the discretization process does not use class information
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� the discretization process does not use class information



Data Discretization

� Discretization techniques can be categorized based on 

which direction it proceeds, as:

– Top-down

� If the process starts by first finding one or a few points (called split 

points or cut points) to split the entire attribute range, and then 

repeats this recursively on the resulting intervals
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– Bottom-up

� starts by considering all of the continuous values as potential split-

points, 

� removes some by merging neighborhood values to form intervals, 

and 

� then recursively applies this process to the resulting intervals.



Data Discretization

� Typical methods:

– Binning

– Entropy-based discretization

– Interval merging by χ2 Analysis

– Clustering analysis
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� All the methods can be applied recursively

� Each method assumes that the values to be discretized are 

sorted in ascending order.



Binning
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Binning

� The sorted values are distributed into a number of 

buckets, or bins, and then replacing each bin value by 

the bin mean or median

� Binning is:

– a top-down splitting technique based on a specified number 

of bins.
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of bins.

– an unsupervised discretization technique, because it does 

not use class information

� Binning methods:

– Equal-width (distance) partitioning

– Equal-depth (frequency) partitioning



Equal-width (distance) partitioning

� Equal-width (distance) partitioning

– Divides the range into N intervals of equal size: uniform 

grid

– if A and B are the lowest and highest values of the attribute, 

the width of intervals will be: W = (B –A)/N.

– The most straightforward, but outliers may dominate 
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– The most straightforward, but outliers may dominate 

presentation

– Skewed data is not handled well



Equal-width (distance) partitioning

� Sorted data for price (in dollars): 

– 4, 8, 15, 21, 21, 24, 25, 28, 34

� W = (B –A)/N = (34 – 4) / 3 = 10

– Bin 1: 4-14, Bin2: 15-24, Bin 3: 25-34

� Equal-width (distance) partitioning:
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� Equal-width (distance) partitioning:

– Bin 1: 4, 8

– Bin 2: 15, 21, 21, 24

– Bin 3: 25, 28, 34



Equal-depth (frequency) partitioning

� Equal-depth (frequency) partitioning

– Divides the range into N intervals, each containing 

approximately same number of samples

– Good data scaling

– Managing categorical attributes can be tricky
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Equal-depth (frequency) partitioning

� Sorted data for price (in dollars): 

– 4, 8, 15, 21, 21, 24, 25, 28, 34

� Equal-depth (frequency) partitioning:

– Bin 1: 4, 8, 15

– Bin 2: 21, 21, 24
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– Bin 3: 25, 28, 34



Entropy-Based Discretization

Data Discretization and Concept Hierarchy Generation 



Entropy-Based Discretization

� Entropy-based discretization is a supervised, top-

down splitting technique.

� It explores class distribution information in its 

calculation and determination of split-points

� Let D consist of data instances defined by a set of 
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attributes and a class-label attribute.

� The class-label attribute provides the class information 

per instance. 



Entropy-Based Discretization

� The basic method for entropy-based discretization of 

an attribute A within the set is as follows:

1) Each value of A can be considered as a potential interval 

boundary or split-point (denoted split point) to partition the 

range of A. 

– That is, a split-point for A can partition the instances in D into two 
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– That is, a split-point for A can partition the instances in D into two 

subsets satisfying the conditions A  ≤ split_point and A > split_point, 

respectively, 

– thereby creating a binary discretization.



Entropy-Based Discretization

2) the information gain after partitioning is

– where D1 and D2 correspond to the instances in D 

– |D| is the number of instances in D, and so on. 

Data Discretization and Concept Hierarchy Generation 

– The entropy function for a given set is calculated based on 

the class distribution of the tuples in the set. 

– For example, given m classes, C1, C2, …, Cm, the entropy 

of D1 is:



Entropy-Based Discretization

– where pi is the probability of class Ci in D1, determined by 

dividing the number of tuples of class Ci in D1 by |D1|, the 

total number of tuples in D1.

– Therefore, when selecting a split-point for attribute A, we 

want to pick the attribute value that gives the minimum 

expected information requirement (i.e., min(InfoA(D))).
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A

3) The process of determining a split-point is recursively 

applied to each partition obtained, until some stopping 

criterion is met, such as:

– when the minimum information requirement on all 

candidate split-points is less than a small threshold, e, 

– or when the number of intervals is greater than a threshold, 

max_interval.



Entropy-Based Discretization

� The interval boundaries (split-points) are defined may 

help improve classification accuracy

� The entropy and information gain measures described 

here are also used for decision tree induction.

Data Discretization and Concept Hierarchy Generation 



Interval Merge by χχχχ2 Analysis
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Interval Merge by χχχχ2 Analysis

� ChiMerge:

– It is a bottom-up method

– Find the best neighboring intervals and merge them to form 

larger intervals recursively

– The method is supervised in that it uses class information.

– The basic notion is that for accurate discretization, the 
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– The basic notion is that for accurate discretization, the 

relative class frequencies should be fairly consistent within 

an interval.

– Therefore, if two adjacent intervals have a very similar 

distribution of classes, then the intervals can be merged. 

Otherwise, they should remain separate.

– ChiMerge treats intervals as discrete categories



Interval Merge by χχχχ2 Analysis

� The ChiMerge method:

– Initially, each distinct value of a numerical attribute A is 

considered to be one interval

– χ2 tests are performed for every pair of adjacent intervals

– Adjacent intervals with the least χ2 values are merged 
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– Adjacent intervals with the least χ2 values are merged 

together, since low χ2 values for a pair indicate similar class 

distributions

– This merge process proceeds recursively until a predefined 

stopping criterion is met (such as significance level, max-

interval, max inconsistency, etc.)



Cluster Analysis
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Cluster Analysis

� Cluster analysis is a popular data discretization

method. 

� A clustering algorithm can be applied to discretize a 

numerical attribute, A, by partitioning the values of A 

into clusters or groups. 
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� Clustering takes the distribution of A into 

consideration, as well as the closeness of data points, 

and therefore is able to produce high-quality 

discretization results.



Cluster Analysis

� Clustering can be used to generate a concept hierarchy 

for A by following either a top-down splitting strategy 

or a bottom-up merging strategy, where each cluster 

forms a node of the concept hierarchy. 

� In the former, each initial cluster or partition may be 

further decomposed into several subclusters, forming a 
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further decomposed into several subclusters, forming a 

lower level of the hierarchy. 

� In the latter, clusters are formed by repeatedly 

grouping neighboring clusters in order to form higher-

level concepts. 



Concept Hierarchy Generation for 

Categorical Data
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Categorical Data



Concept Hierarchy Generation for Categorical Data

� Generalization is the generation of concept hierarchies 

for categorical data

� Categorical attributes have a finite (but possibly large) 

number of distinct values, with no ordering among the 

values. 
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� Examples include 

– geographic location, 

– job category, and 

– itemtype. 



Concept Hierarchy Generation for Categorical Data

� There are several methods for the generation of 

concept hierarchies for categorical data:

– Specification of a partial ordering of attributes explicitly at 

the schema level by users or experts

– Specification of a portion of a hierarchy by explicit data 

grouping
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grouping

– Specification of a set of attributes, but not of their partial 

ordering



Concept Hierarchy Generation for Categorical Data

� Specification of a partial ordering of attributes 

explicitly at the schema level by users or experts

– Example: a relational database or a dimension location of a 

data warehouse may contain the following group of 

attributes: street, city, province or state, and country. 

– A user or expert can easily define a concept hierarchy by 
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– A user or expert can easily define a concept hierarchy by 

specifying ordering of the attributes at the schema level.

– A hierarchy can be defined by specifying the total ordering 

among these attributes at the schema level, such as:

� street < city < province or state < country



Concept Hierarchy Generation for Categorical Data

� Specification of a portion of a hierarchy by explicit data 

grouping

– we can easily specify explicit groupings for a small portion 

of intermediate-level data. 

– For example, after specifying that province and country 

form a hierarchy at the schema level, a user could define 
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form a hierarchy at the schema level, a user could define 

some intermediate levels manually, such as:

� {Urbana, Champaign, Chicago} < Illinois



Concept Hierarchy Generation for Categorical Data

� Specification of a set of attributes, but not of their 

partial ordering

– A user may specify a set of attributes forming a concept 

hierarchy, but omit to explicitly state their partial ordering. 

– The system can then try to automatically generate the 

attribute ordering so as to construct a meaningful concept 
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attribute ordering so as to construct a meaningful concept 

hierarchy.

– Example: Suppose a user selects a set of location-oriented 

attributes, street, country, province_or_state, and city, from 

the AllElectronics database, but does not specify the 

hierarchical ordering among the attributes.



Concept Hierarchy Generation for Categorical Data

� Automatic generation of a schema concept hierarchy based on 

the number of distinct attribute values.

� The attribute with the most 

distinct values is placed at 

the lowest level of the 

hierarchy

� Exceptions, e.g., 
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� Exceptions, e.g., 

weekday, month, quarter, 

year
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The end
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� Concept hierarchy formation

– Recursively reduce the data by collecting and replacing low 

level concepts (such as numeric values for age) by higher 

level concepts (such as young, middle-aged, or senior)
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