Data Mining

3.1 Classification and Prediction

Fall 2008

Instructor: Dr. Masoud Yaghini

Outline

- Classification vs. Prediction
- Classification Process
- Data Preparation
- Comparing Classification Methods
- References

Classification vs. Prediction

Classification vs. Prediction

Classification

- a model or classifier is constructed to predict categorical labels (discrete or nominal)
- classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data

• Prediction

A model or **predictor** is constructed to predict a continuous-valued function or ordered value, i.e., predicts unknown or missing values

Classification vs. Prediction

- Typical applications
 - Credit approval
 - Target marketing
 - Medical diagnosis
 - Fraud detection
 - Performance prediction
 - Manufacturing

Classification

• Techniques for data classification:

- Decision tree classifiers
- Bayesian classifiers
- Bayesian belief networks
- Rule-based classifiers
- Backpropagation (a neural network technique)
- Support vector machines
- K-nearest-neighbor classifiers
- Case-based reasoning
- Genetic algorithms
- Rough sets
- Fuzzy logic techniques

Classification Process

Classification—A Two-Step Process

- Data classification is a two-step process:
 - Model construction or learning step
 - Model usage

Classification—Model construction

- Model construction (learning step): describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
 - Data tuples can be referred to as samples, examples, instances, data points, or objects (in Han's book)

Classification—Model construction

• The loan application example

(a)

Classification—Model usage

- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - The test tuples are randomly selected from the general data set
 - Test set is independent of training set, otherwise over-fitting will occur
 - If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known

Classification—Model usage

• The loan application example

Supervised vs. Unsupervised Learning

Supervised learning (classification)

- The class label of each training tuple is known
- New data is classified based on the training set

Unsupervised learning (clustering)

- The class labels of training tuple is unknown
- The number or set of classes to be learned may not be known in advance
- Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Data Preparation

Data Preparation

- The following preprocessing steps may be applied to the data to help improve the accuracy, efficiency, and scalability of the classification process:
 - Data cleaning
 - Relevance analysis (feature selection)
 - Data transformation

Data Cleaning

- Preprocess data in order to remove or to reduce noise
- Handle missing values
 - e.g., by replacing a missing value with the most commonly occurring value for that attribute, or with the most probable value based on statistics
- Although most classification algorithms have some mechanisms for handling noisy or missing data, this step can help reduce confusion during learning.

Relevance Analysis (feature selection)

- Relevance analysis can be used to detect attributes that do not contribute to the classification
- Including such attributes may otherwise slow down, and possibly mislead, the learning step.
- Relevance analysis (feature selection) includes:
 - Correlation analysis: to remove redundant attributes
 - Attribute subset selection: to remove irrelevant attributes

Relevance Analysis (feature selection)

Correlation analysis:

- Many of the attributes in the data may be redundant.
- Correlation analysis can be used to identify whether any two given attributes are statistically related.
- For example, a strong correlation between attributes
 A1 and A2 would suggest that one of the two could be removed from further analysis.

Relevance Analysis (feature selection)

Attribute subset selection:

- A database may also contain irrelevant attributes.
- Attribute subset selection can be used to find a reduced set of attributes such that the resulting probability distribution of the data classes is as close as possible to the original distribution obtained using all attributes.

Data Transformation

- Data transformation:
 - Normalization
 - Generalization

Data Transformation

Normalization:

- The data may be transformed by normalization, particularly when methods involving distance measurements are used in the learning step.
- Normalization involves scaling all values for a given attribute so that they fall within a small specified range, such as -1.0 to 1.0, or 0.0 to 1.0.
- this would prevent attributes with initially large ranges (like, say, income) from outweighing attributes with initially smaller ranges (such as binary attributes).

Data Transformation

Generalization:

- The data can also be transformed by generalizing it to higher-level concepts.
- This is particularly useful for continuous-valued attributes.
- For example,
 - numeric values for the attribute income can be generalized to discrete ranges, such as *low, medium,* and *high. Similarly, categorical* attributes,

 like street, can be generalized to higher-level concepts, like city.

 Because generalization compresses the original training data, fewer input/output operations may be involved during learning.

Comparing Classification Methods

Comparing Classification Methods

• Classification and prediction methods can be compared and evaluated according to the following criteria:

Accuracy

 the ability of a given classifier to correctly predict the class label of new data

Speed

- time to construct the model (training time)
- time to use the model (classification/prediction time)

Robustness

 the ability of the classifier to make correct predictions given noisy data or data with missing values.

Comparing Classification Methods

Scalability

 The ability to construct the classifier or predictor efficiently given large amounts of data.

Interpretability

 the level of understanding and insight that is provided by the classifier.

References

References

• J. Han, M. Kamber, **Data Mining: Concepts and Techniques**, Elsevier Inc. (2006). (Chapter 6)

The end