Data Mining

3.3 Rule-Based Classification

Fall 2008

Instructor: Dr. Masoud Yaghini
Outline

- Using IF-THEN Rules for Classification
- Rules With Exceptions
- Rule Extraction from a Decision Tree
- 1R Algorithm
- Sequential Covering Algorithms
- PRISM Algorithm
- FOIL Algorithm
- References
Using IF-THEN Rules for Classification
Rule-Based Classifier

- Classify records by using a collection of

 IF condition THEN conclusion

- Rule: (Condition) → y
 - where
 - Condition includes one or more attribute tests
 - y is the class prediction

- LHS & RHS:
 - LHS: rule antecedent or precondition
 - RHS: rule consequent
Using IF-THEN rules for classification

- An example is rule R_1:

 R_1: IF $age = youth$ AND $student = yes$ THEN $buys_computer = yes$

 - The condition consists of one or more attribute tests (such as $age = youth$, and $student = yes$) that are logically ANDed
 - The rule’s consequent contains a class prediction (in this case, we are predicting whether a customer will buy a computer)

- R_1 can also be written as

 R_1: $(age = youth) \land (student = yes) \Rightarrow (buys_computer = yes)$
A rule R can be assessed by its **coverage** and **accuracy**.

Coverage of a rule:
- The percentage of instances that satisfy the antecedent of a rule (i.e., whose attribute values hold true for the rule’s antecedent).

Accuracy of a rule:
- The percentage of instances that satisfy both the antecedent and consequent of a rule
Rule Coverage and Accuracy

- We can define the **coverage** and **accuracy** of rule R as:

 $$\text{coverage}(R) = \frac{n_{\text{covers}}}{|D|}$$

 $$\text{accuracy}(R) = \frac{n_{\text{correct}}}{n_{\text{covers}}}$$

- *where*
 - D: class labeled data set
 - $|D|$: number of instances in D
 - n_{covers}: number of instances covered by R
 - n_{correct}: number of instances correctly classified by R
Example: *AllElectronics*

<table>
<thead>
<tr>
<th>RID</th>
<th>age</th>
<th>income</th>
<th>student</th>
<th>credit_rating</th>
<th>Class: buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>youth</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>youth</td>
<td>high</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>middle_aged</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>senior</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>senior</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>senior</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>middle_aged</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>youth</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td>9</td>
<td>youth</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>senior</td>
<td>medium</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>11</td>
<td>youth</td>
<td>medium</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>12</td>
<td>middle_aged</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>13</td>
<td>middle_aged</td>
<td>high</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>14</td>
<td>senior</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
</tbody>
</table>

Rule-Based Classification
Coverage and Accuracy

- The rule R_1:

 R_1: IF age = youth AND student = yes THEN buys_computer = yes

 - R_1 covers 2 of the 14 instances
 - It can correctly classify both instances

- Therefore:

 - $Coverage(R_1) = 2/14 = 14.28\%$
 - $Accuracy(R_1) = 2/2 = 100\%$.
Executing a rule set

- Two ways of executing a rule set:
 - Ordered set of rules (“decision list”)
 - Order is important for interpretation
 - Unordered set of rules
 - Rules may overlap and lead to different conclusions for the same instance
How We Can Use Rule-based Classification

- An example, we would like to classify instance of X according to $buys_{\text{computer}}$:

$$X = (age = \text{youth}, \text{income} = \text{medium}, \text{student} = \text{yes}, \text{credit rating} = \text{fair})$$

- If a rule is satisfied by X, the rule is said to be triggered

- Potential problems:
 - If more than one rule is satisfied by X
 - Solution: conflict resolution strategy
 - If no rule is satisfied by X
 - Solution: Use a default class
Conflict Resolution

- **Conflict resolution strategy**
 - **Size ordering** (rule antecedent size ordering)
 - Assign the highest priority to the triggering rules that has the “toughest” requirement where toughness is measured by the rule antecedent size. (i.e., with the most attribute test)
 - **Rule Ordering**
 - **Class-based ordering:**
 - Decreasing order of most frequent
 - Most rule-based classification systems use a class-based rule-ordering strategy.
 - **Rule-based ordering** (decision list):
 - Rules are organized into one long priority list, according to some measure of rule quality such as accuracy or coverage, or by experts
Default Rule

- If no rule is satisfied by \(X \), how can we determine the class label of \(X \)?
 - In this case, a default rule can be set up to specify a default class, based on a training set.
 - This may be the class in majority or the majority class of the instances that were not covered by any rule.
 - The default rule is evaluated at the end, if and only if no other rule covers \(X \).
 - The condition in the default rule is empty.
 - In this way, the rule fires when no other rule is satisfied.
Rules With Exceptions
Rules with exceptions

- **Idea:** allow rules to have *exceptions*
- **Example:** rule for iris data

If petal length ≥ 2.45 and petal length < 4.45 then Iris versicolor

- **New instance:**

<table>
<thead>
<tr>
<th>Sepal length (cm)</th>
<th>Sepal width (cm)</th>
<th>Petal length (cm)</th>
<th>Petal width (cm)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>3.5</td>
<td>2.6</td>
<td>0.2</td>
<td>Iris setosa</td>
</tr>
</tbody>
</table>

- **Modified rule:**

If petal length ≥ 2.45 and petal length < 4.45 then

* Iris versicolor EXCEPT if petal width < 1.0 then Iris setosa
A more complex example

- Exceptions to exceptions to exceptions …

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Default: Iris-setosa</td>
</tr>
<tr>
<td>2</td>
<td>except if petal-length ≥ 2.45 and petal-length < 5.355</td>
</tr>
<tr>
<td>3</td>
<td>and petal-width < 1.75</td>
</tr>
<tr>
<td>4</td>
<td>then Iris-versicolor</td>
</tr>
<tr>
<td>5</td>
<td>except if petal-length ≥ 4.95 and petal-width < 1.55</td>
</tr>
<tr>
<td>6</td>
<td>then Iris-virginica</td>
</tr>
<tr>
<td>7</td>
<td>else if sepal-length < 4.95 and sepal-width ≥ 2.45</td>
</tr>
<tr>
<td>8</td>
<td>then Iris-virginica</td>
</tr>
<tr>
<td>9</td>
<td>else if petal-length ≥ 3.35</td>
</tr>
<tr>
<td>10</td>
<td>then Iris-virginica</td>
</tr>
<tr>
<td>11</td>
<td>except if petal-length < 4.85 and sepal-length < 5.95</td>
</tr>
<tr>
<td>12</td>
<td>then Iris-versicolor</td>
</tr>
</tbody>
</table>
Advantages of using exceptions

- Rules can be updated incrementally
 - Easy to incorporate new data
 - Easy to incorporate domain knowledge
- People often think in terms of exceptions
- Each conclusion can be considered just in the context of rules and exceptions that lead to it
 - Locality property is important for understanding large rule sets
 - “Normal” rule sets don’t offer this advantage
More on exceptions

- Default...except if...then...
 is logically equivalent to
- if...then...else
 (where the else specifies what the default did)
- But: exceptions offer a psychological advantage
 - Assumption: defaults and tests early on apply more widely than exceptions further down
 - Exceptions reflect special cases
Rule Extraction from a Decision Tree
Building Classification Rules

- **Direct Method**: extract rules directly from data
 - 1R Algorithm
 - Sequential covering algorithms
 - e.g.: PRISM, RIPPER, CN2, FOIL, and AQ

- **Indirect Method**: extract rules from other classification models
 - Decision trees
 - e.g.: C4.5rules
Rule Extraction from a Decision Tree

- Rules are easier to understand than large trees
- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a precondition: the leaf holds the class prediction
- The order of the rules does not matter
- Rules are
 - Mutually exclusive: no two rules will be satisfied for the same instance
 - Exhaustive: there is one rule for each possible attribute-value combination
Example: *AllElectronics*

```
R1: IF age = youth AND student = no THEN buys_computer = no
R2: IF age = youth AND student = yes THEN buys_computer = yes
R3: IF age = middle_aged THEN buys_computer = yes
R4: IF age = senior AND credit_rating = excellent THEN buys_computer = yes
R5: IF age = senior AND credit_rating = fair THEN buys_computer = no
```
Pruning the Rule Set

- The resulting set of rules extracted can be large and difficult to follow
 - Solution: pruning the rule set
- For a given rule antecedent, any condition that does not improve the estimated accuracy of the rule can be pruned (i.e., removed)
- C4.5 extracts rules from an unpruned tree, and then prunes the rules using an approach similar to its tree pruning method
1R Algorithm
1R algorithm

- An easy way to find very simple classification rule
- 1R: rules that test one particular attribute
- Basic version
 - One branch for each value
 - Each branch assigns most frequent class
 - Error rate: proportion of instances that don’t belong to the majority class of their corresponding branch
 - Choose attribute with lowest error rate (assumes nominal attributes)
- “Missing” is treated as a separate attribute value
For each attribute,
 For each value of that attribute, make a rule as follows:
 count how often each class appears
 find the most frequent class
 make the rule assign that class to this attribute-value.
 Calculate the error rate of the rules.
Choose the rules with the smallest error rate.
Example: The weather problem

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>false</td>
<td>no</td>
</tr>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>mild</td>
<td>high</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>cool</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>cool</td>
<td>normal</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>overcast</td>
<td>cool</td>
<td>normal</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>high</td>
<td>false</td>
<td>no</td>
</tr>
<tr>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>mild</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>sunny</td>
<td>mild</td>
<td>normal</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>overcast</td>
<td>mild</td>
<td>high</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>overcast</td>
<td>hot</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>mild</td>
<td>high</td>
<td>true</td>
<td>no</td>
</tr>
</tbody>
</table>

Rule-Based Classification
Evaluating the weather attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Rules</th>
<th>Errors</th>
<th>Total errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 outlook</td>
<td>sunny → no</td>
<td>2/5</td>
<td>4/14</td>
</tr>
<tr>
<td></td>
<td>overcast → yes</td>
<td>0/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rainy → yes</td>
<td>2/5</td>
<td></td>
</tr>
<tr>
<td>2 temperature</td>
<td>hot → no*</td>
<td>2/4</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>mild → yes</td>
<td>2/6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cool → yes</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>3 humidity</td>
<td>high → no</td>
<td>3/7</td>
<td>4/14</td>
</tr>
<tr>
<td></td>
<td>normal → yes</td>
<td>1/7</td>
<td></td>
</tr>
<tr>
<td>4 windy</td>
<td>false → yes</td>
<td>2/8</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>true → no*</td>
<td>3/6</td>
<td></td>
</tr>
</tbody>
</table>

Rule-Based Classification
The attribute with the smallest number of errors

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Rules</th>
<th>Errors</th>
<th>Total errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 outlook</td>
<td>sunny → no</td>
<td>2/5</td>
<td>4/14</td>
</tr>
<tr>
<td></td>
<td>overcast → yes</td>
<td>0/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rainy → yes</td>
<td>2/5</td>
<td></td>
</tr>
<tr>
<td>2 temperature</td>
<td>hot → no*</td>
<td>2/4</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>mild → yes</td>
<td>2/6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cool → yes</td>
<td>1/4</td>
<td></td>
</tr>
<tr>
<td>3 humidity</td>
<td>high → no</td>
<td>3/7</td>
<td>4/14</td>
</tr>
<tr>
<td></td>
<td>normal → yes</td>
<td>1/7</td>
<td></td>
</tr>
<tr>
<td>4 windy</td>
<td>false → yes</td>
<td>2/8</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>true → no*</td>
<td>3/6</td>
<td></td>
</tr>
</tbody>
</table>

Rule-Based Classification
Dealing with numeric attributes

- Discretize numeric attributes
- Divide each attribute’s range into intervals
 - Sort instances according to attribute’s values
 - Place breakpoints where class changes (majority class)
 - This minimizes the total error
Weather data with some numeric attributes

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>85</td>
<td>85</td>
<td>false</td>
<td>no</td>
</tr>
<tr>
<td>sunny</td>
<td>80</td>
<td>90</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>overcast</td>
<td>83</td>
<td>86</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>70</td>
<td>96</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>68</td>
<td>80</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>65</td>
<td>70</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>overcast</td>
<td>64</td>
<td>65</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>sunny</td>
<td>72</td>
<td>95</td>
<td>false</td>
<td>no</td>
</tr>
<tr>
<td>sunny</td>
<td>69</td>
<td>70</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>75</td>
<td>80</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>sunny</td>
<td>75</td>
<td>70</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>overcast</td>
<td>72</td>
<td>90</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>overcast</td>
<td>81</td>
<td>75</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>71</td>
<td>91</td>
<td>true</td>
<td>no</td>
</tr>
</tbody>
</table>

Rule-Based Classification
Example: temperature from weather data

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>65</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td>71</td>
<td>72</td>
<td>72</td>
<td>75</td>
<td>75</td>
<td>80</td>
<td>81</td>
</tr>
<tr>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>no</td>
</tr>
</tbody>
</table>

- Discretization involves partitioning this sequence by placing breakpoints wherever the class changes,

| yes | no | yes | yes | yes | no | no | yes | yes | yes | no | yes | yes | no |
The problem of overfitting

- Overfitting is likely to occur whenever an attribute has a large number of possible values.
- This procedure is very sensitive to noise.
 - One instance with an incorrect class label will probably produce a separate interval.
- Attribute will have zero errors.
- Simple solution: enforce minimum number of instances in majority class per interval.
Minimum is set at 3 for temperature attribute

- The partitioning process begins

 yes no yes yes | yes ...

- the next example is also yes, we lose nothing by including that in the first partition

 yes no yes yes yes | no no yes yes yes | no yes yes no

- Thus the final discretization is

 yes no yes yes yes no no yes yes yes yes | no yes yes no

- the rule set

 temperature: \leq 77.5 \rightarrow yes \\
 > 77.5 \rightarrow no

Rule-Based Classification
Resulting rule set with overfitting avoidance

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Rules</th>
<th>Errors</th>
<th>Total errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outlook</td>
<td>Sunny \rightarrow No</td>
<td>2/5</td>
<td>4/14</td>
</tr>
<tr>
<td></td>
<td>Overcast \rightarrow Yes</td>
<td>0/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rainy \rightarrow Yes</td>
<td>2/5</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>$\leq 77.5 \rightarrow$ Yes</td>
<td>3/10</td>
<td>5/14</td>
</tr>
<tr>
<td></td>
<td>$> 77.5 \rightarrow$ No*</td>
<td>2/4</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>$\leq 82.5 \rightarrow$ Yes</td>
<td>1/7</td>
<td>3/14</td>
</tr>
<tr>
<td></td>
<td>> 82.5 and $\leq 95.5 \rightarrow$ No</td>
<td>2/6</td>
<td></td>
</tr>
<tr>
<td>Windy</td>
<td>$> 95.5 \rightarrow$ Yes</td>
<td>0/1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>False \rightarrow Yes</td>
<td>2/8</td>
<td>5/14</td>
</tr>
</tbody>
</table>

* Indicates overfitting avoidance.
Sequential Covering Algorithms
Sequential Covering Algorithms

- Convert decision tree into a rule set
 - Straightforward, but rule set very complex
- Instead, can generate rule set directly
 - for each class in turn find rule set that covers all instances in it (excluding instances not in the class)

A **sequential covering algorithm**:
- The rules are learned *sequentially* (one at a time)
- Each rule for a given class will ideally cover many of the instances of that class (and hopefully none of the instances of other classes).
- Each time a rule is learned, the instances covered by the rule are removed, and the process repeats on the remaining instances.
Sequential Covering Algorithms

- Sequential covering algorithms are the most widely used approach to mining classification rules
- Typical algorithms: PRISM, FOIL, AQ, CN2, RIPPER
- Comparison with decision-tree induction: learning a set of rules *simultaneously*
Sequential Covering Algorithms

\textbf{while} (enough target instances left)

- generate a rule
- remove positive target instances satisfying this rule
An Alternative Approach

- A newer alternative approach, classification rules can be generated using **associative classification algorithms**.
- They search for attribute-value pairs that occur frequently in the data.
- These pairs may form association rules, which can be analyzed and used in classification.
Basic Sequential Covering Algorithm

Algorithm: Sequential covering. Learn a set of IF-THEN rules for classification.

Input:

- D, a data set class-labeled tuples;
- Att_vals, the set of all attributes and their possible values.

Output: A set of IF-THEN rules.

Method:

1. $Rule_set = \{\}$; // initial set of rules learned is empty
2. for each class c do
3. \hspace{1em} repeat
4. \hspace{2em} Rule = Learn_One_Rule(D, Att_vals, c);
5. \hspace{2em} remove tuples covered by $Rule$ from D;
6. \hspace{1em} until terminating condition;
7. \hspace{1em} $Rule_set = Rule_set + Rule$; // add new rule to rule set
8. endfor
9. return $Rule_Set$;
Basic Sequential Covering Algorithm

Steps:
- Rules are learned one at a time
- Each time a rule is learned, the instances covered by the rules are removed
- The process repeats on the remaining instances unless termination condition, e.g., when no more training examples or when the quality of a rule returned is below a user-specified level
Generating A Rule

- Typically, rules are grown in a **general-to-specific manner**
- We start with an empty rule and then gradually keep appending attribute tests to it.
- We append by adding the attribute test as a logical conjunct to the existing condition of the rule antecedent.
Example: Generating A Rule

- Suppose our training set, D, consists of loan application data.
- Attributes regarding each applicant include their:
 - age
 - income
 - education level
 - residence
 - credit rating
 - the term of the loan.
- The classifying attribute is *loan decision*, which indicates whether a loan is accepted (considered safe) or rejected (considered risky).
Example: Generating A Rule

- To learn a rule for the class “accept,” we start off with the most general rule possible, that is, the condition of the rule antecedent is empty. The rule is:

 \[
 \text{IF}\quad \text{THEN} \quad \text{loan_decision} = \text{accept}.
 \]

- We then consider each possible attribute test that may be added to the rule.
Example: Generating A Rule

- Each time it is faced with adding a new attribute test (conjunct) to the current rule, it picks the one that most improves the rule quality, based on the training samples.

- The process repeats, where at each step, we continue to greedily grow rules until the resulting rule meets an acceptable quality level.
Example: Generating A Rule

- A general-to-specific search through rule space

Rule-Based Classification
Example: Generating A Rule

Possible rule set for class “a”:

\[
\text{if true then class } = a
\]
Example: Generating A Rule

Possible rule set for class “a”:

If $x > 1.2$ then class = a
Example: Generating A Rule

Possible rule set for class “a”:

If $x > 1.2$ and $y > 2.6$ then class = a
Decision tree for the same problem

- Corresponding decision tree: (produces exactly the same predictions)

```
x > 1.2 ?
  no
  b
  yes
  y > 2.6 ?
    no
    b
    yes
    a
```
Rules vs. trees

- Both methods might first split the dataset using the x attribute and would probably end up splitting it at the same place ($x = 1.2$)
- But: rule sets *can* be more clear when decision trees suffer from replicated subtrees
- Also: in multiclass situations, covering algorithm concentrates on one class at a time whereas decision tree learner takes all classes into account
PRISM Algorithm
PRISM Algorithm

- **PRISM method** generates a rule by adding tests that maximize rule’s accuracy

- **Divide-and-conquer vs. covering algorithms**
 - Divide-and-conquer algorithms choose an attribute to maximize the information gain
 - But: the covering algorithms choose an attribute–value pair to maximize the probability of the desired classification

Rule-Based Classification
PRISM Algorithm

- Each new test reduces rule’s coverage:
Selecting a test

- **Goal:** maximize accuracy
 - \(t \) total number of instances covered by rule
 - \(p \) positive examples of the class covered by rule
 - \(t - p \) number of errors made by rule
 - Select test that maximizes the ratio \(p/t \)

- We are finished when \(p/t = 1 \) or the set of instances can’t be split any further
Example: contact lens data

<table>
<thead>
<tr>
<th>Age</th>
<th>Spectacle prescription</th>
<th>Astigmatism</th>
<th>Tear production rate</th>
<th>Recommended lenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>young</td>
<td>myope</td>
<td>no</td>
<td>reduced</td>
<td>none</td>
</tr>
<tr>
<td>young</td>
<td>myope</td>
<td>no</td>
<td>normal</td>
<td>soft</td>
</tr>
<tr>
<td>young</td>
<td>myope</td>
<td>yes</td>
<td>reduced</td>
<td>none</td>
</tr>
<tr>
<td>young</td>
<td>hypermetrope</td>
<td>no</td>
<td>reduced</td>
<td>none</td>
</tr>
<tr>
<td>young</td>
<td>hypermetrope</td>
<td>yes</td>
<td>normal</td>
<td>hard</td>
</tr>
<tr>
<td>young</td>
<td>hypermetrope</td>
<td>yes</td>
<td>reduced</td>
<td>none</td>
</tr>
<tr>
<td>young</td>
<td>hypermetrope</td>
<td>yes</td>
<td>normal</td>
<td>hard</td>
</tr>
<tr>
<td>pre-presbyopic</td>
<td>myope</td>
<td>no</td>
<td>reduced</td>
<td>none</td>
</tr>
<tr>
<td>pre-presbyopic</td>
<td>myope</td>
<td>no</td>
<td>normal</td>
<td>soft</td>
</tr>
<tr>
<td>pre-presbyopic</td>
<td>myope</td>
<td>yes</td>
<td>reduced</td>
<td>none</td>
</tr>
<tr>
<td>pre-presbyopic</td>
<td>myope</td>
<td>yes</td>
<td>normal</td>
<td>hard</td>
</tr>
<tr>
<td>pre-presbyopic</td>
<td>hypermetrope</td>
<td>no</td>
<td>reduced</td>
<td>none</td>
</tr>
<tr>
<td>pre-presbyopic</td>
<td>hypermetrope</td>
<td>yes</td>
<td>normal</td>
<td>soft</td>
</tr>
<tr>
<td>pre-presbyopic</td>
<td>hypermetrope</td>
<td>yes</td>
<td>normal</td>
<td>none</td>
</tr>
<tr>
<td>presbyopic</td>
<td>myope</td>
<td>no</td>
<td>reduced</td>
<td>none</td>
</tr>
<tr>
<td>presbyopic</td>
<td>myope</td>
<td>yes</td>
<td>reduced</td>
<td>none</td>
</tr>
<tr>
<td>presbyopic</td>
<td>myope</td>
<td>yes</td>
<td>normal</td>
<td>hard</td>
</tr>
<tr>
<td>presbyopic</td>
<td>hypermetrope</td>
<td>no</td>
<td>reduced</td>
<td>none</td>
</tr>
<tr>
<td>presbyopic</td>
<td>hypermetrope</td>
<td>no</td>
<td>normal</td>
<td>soft</td>
</tr>
<tr>
<td>presbyopic</td>
<td>hypermetrope</td>
<td>yes</td>
<td>reduced</td>
<td>none</td>
</tr>
<tr>
<td>presbyopic</td>
<td>hypermetrope</td>
<td>yes</td>
<td>normal</td>
<td>none</td>
</tr>
</tbody>
</table>

Rule-Based Classification
Example: contact lens data

- To begin, we seek a rule:

 If ? then recommendation = hard

- Possible tests:

 age = young 2/8
 age = pre-presbyopic 1/8
 age = presbyopic 1/8
 spectacle prescription = myope 3/12
 spectacle prescription = hypermetrope 1/12
 astigmatism = no 0/12
 astigmatism = yes 4/12
 tear production rate = reduced 0/12
 tear production rate = normal 4/12
Create the rule

- Rule with best test added and covered instances:

 If astigmatism = yes then recommendation = hard

<table>
<thead>
<tr>
<th>Age</th>
<th>Spectacle prescription</th>
<th>Astigmatism</th>
<th>Tear production rate</th>
<th>Recommended lenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>young</td>
<td>myope</td>
<td>yes</td>
<td>reduced</td>
<td>none</td>
</tr>
<tr>
<td>young</td>
<td>myope</td>
<td>yes</td>
<td>normal</td>
<td>hard</td>
</tr>
<tr>
<td>young</td>
<td>hypermetrope</td>
<td>yes</td>
<td>reduced</td>
<td>none</td>
</tr>
<tr>
<td>young</td>
<td>hypermetrope</td>
<td>yes</td>
<td>normal</td>
<td>hard</td>
</tr>
<tr>
<td>pre-presbyopic</td>
<td>myope</td>
<td>yes</td>
<td>reduced</td>
<td>none</td>
</tr>
<tr>
<td>pre-presbyopic</td>
<td>myope</td>
<td>yes</td>
<td>normal</td>
<td>hard</td>
</tr>
<tr>
<td>pre-presbyopic</td>
<td>hypermetrope</td>
<td>yes</td>
<td>reduced</td>
<td>none</td>
</tr>
<tr>
<td>pre-presbyopic</td>
<td>hypermetrope</td>
<td>yes</td>
<td>normal</td>
<td>none</td>
</tr>
<tr>
<td>presbyopic</td>
<td>myope</td>
<td>yes</td>
<td>reduced</td>
<td>none</td>
</tr>
<tr>
<td>presbyopic</td>
<td>myope</td>
<td>yes</td>
<td>normal</td>
<td>hard</td>
</tr>
<tr>
<td>presbyopic</td>
<td>hypermetrope</td>
<td>yes</td>
<td>reduced</td>
<td>none</td>
</tr>
<tr>
<td>presbyopic</td>
<td>hypermetrope</td>
<td>yes</td>
<td>normal</td>
<td>none</td>
</tr>
</tbody>
</table>
Further refinement

Current state:

If astigmatism = yes and ? then recommendation = hard

Possible tests:

- age = young: 2/4
- age = pre-presbyopic: 1/4
- age = presbyopic: 1/4
- spectacle prescription = myope: 3/6
- spectacle prescription = hypermetrope: 1/6
- tear production rate = reduced: 0/6
- tear production rate = normal: 4/6
Modified rule and resulting data

- Rule with best test added:

 If astigmatism = yes and tear production rate = normal
 then recommendation = hard

- Instances covered by modified rule:

<table>
<thead>
<tr>
<th>Age</th>
<th>Spectacle prescription</th>
<th>Astigmatism</th>
<th>Tear production rate</th>
<th>Recommended lenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>young</td>
<td>myope</td>
<td>yes</td>
<td>normal</td>
<td>hard</td>
</tr>
<tr>
<td>young</td>
<td>hypermetropia</td>
<td>yes</td>
<td>normal</td>
<td>hard</td>
</tr>
<tr>
<td>pre-presbyopic</td>
<td>myope</td>
<td>yes</td>
<td>normal</td>
<td>hard</td>
</tr>
<tr>
<td>pre-presbyopic</td>
<td>hypermetropia</td>
<td>yes</td>
<td>normal</td>
<td>none</td>
</tr>
<tr>
<td>presbyopic</td>
<td>myope</td>
<td>yes</td>
<td>normal</td>
<td>hard</td>
</tr>
<tr>
<td>presbyopic</td>
<td>hypermetropia</td>
<td>yes</td>
<td>normal</td>
<td>none</td>
</tr>
</tbody>
</table>
Further refinement

- **Current state:**

 If astigmatism = yes and tear production rate = normal and ? then recommendation = hard

- **Possible tests:**

 - age = young
 2/2
 - age = pre-presbyopic
 1/2
 - age = presbyopic
 1/2
 - spectacle prescription = myope
 3/3
 - spectacle prescription = hypermetrope
 1/3

- **Tie between the first and the fourth test**
 - We choose the one with greater coverage

Rule-Based Classification
The result

- Final rule:

 If astigmatism = yes and tear production rate = normal
 and spectacle prescription = myope then recommendation = hard

- Second rule for recommending “hard lenses”:
 (built from instances not covered by first rule)

 If age = young and astigmatism = yes and
 tear production rate = normal then recommendation = hard

- These two rules cover all “hard lenses”:
 - Process is repeated with other two classes
Pseudo-code for PRISM

For each class C
 Initialize E to the instance set
 While E contains instances in class C
 Create a rule R with an empty left-hand side that predicts class C
 Until R is perfect (or there are no more attributes to use) do
 For each attribute A not mentioned in R, and each value v,
 Consider adding the condition A=v to the LHS of R
 Select A and v to maximize the accuracy p/t
 (break ties by choosing the condition with the largest p)
 Add A=v to R
 Remove the instances covered by R from E

Rule-Based Classification
Rules vs. decision lists

- PRISM with outer loop generates a decision list for one class
 - Subsequent rules are designed for rules that are not covered by previous rules
 - But: order doesn’t matter because all rules predict the same class

- Outer loop considers all classes separately
 - No order dependence implied
Separate and conquer

- Methods like PRISM (for dealing with one class) are *separate-and-conquer* algorithms:
 - First, identify a useful rule
 - Then, separate out all the instances it covers
 - Finally, “conquer” the remaining instances

- Difference to divide-and-conquer methods:
 - Subset covered by rule doesn’t need to be explored any further
FOIL Algorithm
(First Order Inductive Learner Algorithm)
Coverage or Accuracy?

Rule-Based Classification
Coverage or Accuracy?

- Consider the two rules:
 - \(R_1 \): correctly classifies 38 of the 40 instances it covers
 - \(R_2 \): covers only two instances, which it correctly classifies
- Their accuracies are 95% and 100%
- \(R_2 \) has greater accuracy than \(R_1 \), but it is not the better rule because of its small coverage
- Accuracy on its own is not a reliable estimate of rule quality
- Coverage on its own is not useful either
Consider Both Coverage and Accuracy

- If our current rule is R:
 \[\text{IF } \text{condition} \text{ THEN } \text{class} = c \]
- We want to see if logically ANDing a given attribute test to condition would result in a better rule
- We call the new condition, $condition'$, where R':
 \[\text{IF } condition' \text{ THEN } \text{class} = c \]
 - is our potential new rule
- In other words, we want to see if R' is any better than R
FOIL Information Gain

- FOIL_Gain (in FOIL & RIPPER): assesses info_gain by extending condition

\[FOIL_Gain = pos' \times \left(\log_2 \frac{pos'}{pos' + neg'} - \log_2 \frac{pos}{pos + neg} \right) \]

- where
 - \textit{pos} (\textit{neg}) be the number of positive (negative) instances covered by \(R \)
 - \textit{pos}' (\textit{neg}') be the number of positive (negative) instances covered by \(R' \)

- It favors rules that have high accuracy and cover many positive instances
Rule Generation

- To generate a rule

 \[\text{while(true)}\]

 find the best predicate \(p \)

 \[\text{if foil-gain(p) > threshold then add p to current rule}\]

 \[\text{else break}\]
Rule Pruning: FOIL method

- Assessments of rule quality as described above are made with instances from the training data.
- Rule pruning based on an independent set of test instances.

\[FOIL_{Prune}(R) = \frac{pos - neg}{pos + neg} \]

- We calculate \(FOIL_{Prune} \) for \(FOIL_{Prune} \).
- If \(FOIL_{Prune} \) is higher for the pruned version of \(R \), prune \(R \).
References

- J. Han, M. Kamber, *Data Mining: Concepts and Techniques*, Elsevier Inc. (2006). (Chapter 6)

The end