Data Mining

3.4 Bayesian Classification

Fall 2008

Instructor: Dr. Masoud Yaghini

Outline

- Introduction
- Bayes' Theorem
- Naïve Bayesian Classification
- References

- **Bayesian classifiers** are statistical classifiers.
- They can predict class membership probabilities, such as the probability that a given instance belongs to a particular class.
- Bayesian classification is based on **Bayes' theorem**
- Bayesian classifiers have also exhibited high accuracy and speed when applied to large databases.
- Popular methods:
 - Naïve Bayesian classifier
 - Bayesian belief networks

Naïve Bayesian classifier

- Naïve Bayesian classifiers assume that the effect of an attribute value on a given class is independent of the values of the other attributes.
- This assumption is called *class conditional independence.*
- It is made to simplify the computations involved and, in this sense, is considered "naïve."
- Naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers

Bayesian belief networks

- Bayesian belief networks are graphical models, which unlike naïve Bayesian classifiers, allow the representation of dependencies among subsets of attributes.
- Bayesian belief networks can also be used for classification.

Bayes' Theorem

Bayesian Theorem

- Let X be a data sample ("*evidence*"): class label is unknown
- Let H be a *hypothesis* that X belongs to class C
- Classifier determine P(H|X), the probability that the hypothesis holds given the observed data sample X
- P(H) (*prior probability*), the initial probability
 - E.g., **X** will buy computer, regardless of age, income,
- P(X): probability that sample data is observed

. . .

Bayesian Theorem

- P(X|H) (*posteriori probability*), the probability of observing the sample X, given that the hypothesis holds
 - E.g., Given that X will buy computer, the prob. that X is 31..40, medium income
- Given training data X, posteriori probability of a hypothesis H, P(H|X), follows the Bayes theorem

$$P(H | \mathbf{X}) = \frac{P(\mathbf{X} | H)P(H)}{P(\mathbf{X})}$$

- Naïve bayes classifier use all the attributes
- Two assumptions: Attributes are
 - equally important
 - statistically independent
 - ◆ I.e., knowing the value of one attribute says nothing about the value of another
- Equally important & independence assumptions are never correct in real-life datasets

- Let D be a training set of instances and their associated class labels, and each instance is represented by an n-dimentional attribute vector $\mathbf{X} = (x_1, x_2, ..., x_n)$
- Suppose there are *m* classes C₁, C₂, ..., C_m.
- Naïve Bayesian classifier will predict that X belongs to the class having the highest posterior probability, conditioned on X, i.e., the maximal P(C_i|X)

 The posterior probability can be derived from Bayes' theorem

$$P(C_i | \mathbf{X}) = \frac{P(\mathbf{X} | C_i) P(C_i)}{P(\mathbf{X})}$$

• Since P(X) is constant for all classes, only

$$P(C_i | \mathbf{X}) = P(\mathbf{X} | C_i) P(C_i)$$

needs to be maximized

- Note that the class prior probabilities may be estimated by P(C_i)=|C_{i,Di}|/|D|,
 - Where $/C_{i,D}$ is the number of training tuples of class C_i in D.
- If the class prior probabilities are not known, then it is commonly assumed that the classes are equally likely,
 - that is, $P(C_1) = P(C_2) = P(C_m)$, and we would therefore maximize $P(X|C_i)$.

 A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes):

$$P(\mathbf{X}|C_{i}) = \prod_{k=1}^{n} P(x_{k}|C_{i}) = P(x_{1}|C_{i}) \times P(x_{2}|C_{i}) \times .. \times P(x_{n}|C_{i})$$

 This greatly reduces the computation cost: Only counts the class distribution

- If A_k is categorical
 - $P(x_k|C_i)$ is the # of tuples in C_i having value x_k for A_k divided by $|C_{i, D}|$ (# of tuples of C_i in D)
- If A_k is continous-valued
 - $P(x_k|C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ :

$$g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(x-\mu)^2}{2\sigma^2}} \quad \mu = \frac{1}{n} \sum_{i=1}^n x_i \quad \sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \mu)^2}$$

- and P(x_k|C_i) is

$$P(x_k | C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$$

Example: *AllElectronics*

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Example: *AllElectronics*

- Let *C1* correspond to the class *buys_computer = yes* and *C2* correspond to *buys_computer = no.*
- The tuple we wish to classify is

X = (age = youth, income = medium, student = yes, credit rating = fair)

- We need to maximize *P(X/Ci)P(Ci), for i = 1, 2.*
- *P(Ci)*, the prior probability of each class, can be computed based on the training tuples:

Example: *AllElectronics*

X = (age <= 30, income = medium, student = yes, credit_rating = fair)

```
P(X|C<sub>i</sub>) : P(X|buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
        P(X|buys_computer = "no") = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
P(X|C<sub>i</sub>)*P(C<sub>i</sub>) : P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028
        P(X|buys_computer = "no") * P(buys_computer = "no") = 0.007
Therefore, X belongs to class ("buys_computer = yes")
```

Avoiding the 0-Probability Problem

• Naïve Bayesian prediction requires each conditional prob. be non-zero. Otherwise, the predicted prob. will be zero

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

- Ex. Suppose a dataset with 1000 tuples, income=low (0), income= medium (990), and income = high (10) for bus_computer = 'yes'
- Use Laplacian correction (or Laplacian estimator)
 - Adding 1 to each case

Prob(income = low) = 1/1003

Prob(income = medium) = 991/1003

Prob(income = high) = 11/1003

The "corrected" prob. estimates are close to their "uncorrected" counterparts

Example: weather problem

Outlook		Temperature		Humidity		Windy		Play					
	yes	no		yes	no		yes	no		yes	no	yes	no
sunny overcast rainy	2 4 3	3 0 2	hot mild cool	2 4 3	2 2 1	high normal	3 6	4 1	false true	6 3	2 3	9	5
sunny overcast rainy	2/9 4/9 3/9	3/5 0/5 2/5	hot mild cool	2/9 4/9 3/9	2/5 2/5 1/5	high normal	3/9 6/9	4/5 1/5	false true	6/9 3/9	2/5 3/5	9/14	5/14

• E.g. *P(outlook=sunny | play=yes) = 2/9 P(windy=true | play=No) = 3/5*

Probabilities for weather data

• A new day:

Outlook	Temperature	Humidity	Windy	Play
sunny	cool	high	true	?

likelihood of *yes* = $2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0053$.

likelihood of $no = 3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0206$.

Conversion into a probability by normalization:

Probability of $yes = \frac{0.0053}{0.0053 + 0.0206} = 20.5\%$, 0.0206

Probability of $no = \frac{0.0206}{0.0053 + 0.0206} = 79.5\%$.

Bayes's rule

- The hypothesis H (class) is that *play* will be '*yes*' Pr[HX] is 20.5%
- The evidence X is the particular combination of attribute values for the new day:

outlook = sunny temperature = cool humidity = high windy = true

Weather data example

$$\Pr[yes|x] = 2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14$$

The "zero-frequency problem"

- What if an attribute value doesn't occur with every class value?
 - e.g. "Humidity = high" for class "yes" Probability will be zero!
 - P [Humidity=High / yes]=0
 - A posteriori probability will also be zero!
 Pr [yes / E]=0
 - (No matter how likely the other values are!)
- Correction: add 1 to the count for every attribute value-class combination (*Laplace estimator*)
- Result: probabilities will never be zero!

Modified probability estimates

- In some cases adding a constant different from 1 might be more appropriate
- Example: attribute outlook for class 'yes'

 Weights don't need to be equal but they must sum to 1 (*p*1, *p*2, and *p*3 sum to 1)

$2 + \mu p_1$	$4 + \mu p_2$	$3 + \mu p_3$
9+µ	$9 + \mu$	$9+\mu$

Missing values

- Training: instance is not included in frequency count for attribute value-class combination
- Classification: attribute will be omitted from calculation
- Example: if the value of *outlook* were missing in the example

Outlook	Temperature	Humidity	Windy	Play
?	cool	high	true	?

- Likelihood of "yes" = $3/9 \times 3/9 \times 3/9 \times 9/14 = 0.0238$
- Likelihood of "no" = $1/5 \times 4/5 \times 3/5 \times 5/14 = 0.0343$
- P("yes") = 0.0238 / (0.0238 + 0.0343) = 41%
- P("no") = 0.0343 / (0.0238 + 0.0343) = 59%

Numeric attributes

- Usual assumption: attributes have a *normal* or *Gaussian* probability distribution
- The *probability density function* for the normal distribution is defined by two parameters:
- Sample mean μ

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Standard deviation σ

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2}$$

• Then the density function *f(x)* is:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

Statistics for weather data

0	ıtlook		Temp	eratur	e	Hu	midity		N	Vindy		PI	ay
	yes	no		yes	no		yes	no		yes	no	yes	no
sunny	2	3		83	85		86	85	false	6	2	9	5
overcast	4	0		70	80		96	90	true	3	3		
rainy	3	2		68	65		80	70					
				64	72		65	95					
				69	71		70	91					
				75			80						
				75			70						
				72			90						
				81			75						
sunny overcast rainy	2/9 4/9 3/9	3/5 0/5 2/5	mean std. dev.	73 6.2	74.6 7.9	mean std. dev.	79.1 10.2	86.2 9.7	false true	6/9 3/9	2/5 3/5	9/14	5/14

Example density value

- If we are considering a yes outcome when temperature has a value of 66
- We just need to plug x = 66, μ = 73, and σ = 6.2 into the formula
- The value of the probability density function is:

$$f(temperature = 66 | yes) = \frac{1}{\sqrt{2\pi} \cdot 6.2} e^{\frac{(66-73)^2}{2 \cdot 6.2^2}} = 0.0340$$

Classifying a new day

• A new day:

Outlook	Temperature	Humidity	Windy	Play
sunny	66	90	true	?

likelihood of *yes* = $2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036$ likelihood of *no* = $3/5 \times 0.0221 \times 0.0381 \times 3/5 \times 5/14 = 0.000108$

Probability of
$$yes = \frac{0.000036}{0.000036 + 0.000108} = 25.0\%$$

Probability of $no = \frac{0.000108}{0.000036 + 0.000108} = 75.0\%$

Missing values

• Missing values during training are not included in calculation of mean and standard deviation

Naïve Bayesian Classifier: Comments

- Advantages
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
- How to deal with these dependencies?
 - Bayesian Belief Networks

References

References

• J. Han, M. Kamber, **Data Mining: Concepts and Techniques**, Elsevier Inc. (2006). (Chapter 6)

 I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd Edition, Elsevier Inc., 2005. (Chapter 6)

The end