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Introduction

e Bayesian classifiers are statistical classifiers.

e They can predict class membership probabilities,
such as the probability that a given instance belongs

to a particu
e Bayesian c
e Bayesianc

ar class.
assification is based on Bayes’ theorem
assifiers have also exhibited high

accuracy and speed when applied to large

databases.

e Popular methods:
— Naive Bayesian classifier
— Bayesian belief networks
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Introduction

e Naive Bayesian classifier

Naive Bayesian classifiers assume that the effect of
an attribute value on a given class is independent of
the values of the other attributes.

This assumption is called c/ass conditional
Independence.

It is made to simplify the computations involved and,
In this sense, is considered “naive.”

Naive Bayesian classifier, has comparable
performance with decision tree and selected neural
network classifiers
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Introduction

e Bayesian belief networks

— Bayesian belief networks are graphical models, which
unlike naive Bayesian classifiers, allow the
representation of dependencies among subsets of
attributes.

— Bayesian belief networks can also be used for
classification.
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Bayes’ Theorem
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Bayesian Theorem

e Let X be a data sample (“evidence’): class label is
unknown

e Let H be a Aypothesis that X belongs to class C

e Classifier determine P(H|X), the probability that the
hypothesis holds given the observed data sample X

e P(H) (prior probability), the initial probability
— E.g., X will buy computer, regardless of age, income,

e P(X): probability that sample data is observed
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Bayesian Theorem

e P(X|H) (posteriori probability), the probability of
observing the sample X, given that the hypothesis
holds

— E.g., Given that X will buy computer, the prob. that X
Is 31..40, medium income

e Given training data X, posteriori probability of a
hypothesis H, P(H|X), follows the Bayes theorem

P(X|H)P(H)

P(H 1X) =25 5oes
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Naive Bayesian Classification
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Naive Bayesian Classification

e Naive bayes classifier use all the attributes

e Two assumptions: Attributes are
— equally important
— Statistically independent

+ l.e., knowing the value of one attribute says nothing about the
value of another

e Equally important & independence assumptions
are never correct in real-life datasets
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Naive Bayesian Classification

e Let D be a training set of instances and their
associated class labels, and each instance is
represented by an n-dimentional attribute vector
X = (Xqy Xoy «eny Xp)

e Suppose there are mclasses C,, C,, ..., C,..

e Naive Bayesian classifier will predict that X
belongs to the class having the highest posterior

probability, conditioned on X, i.e., the maximal
P(GilX)
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Naive Bayesian Classification

e The posterior probability can be derived from
Bayes’ theorem

P(XIC)P(C)
P(X)

P(Ci 1X)=

e Since P(X) is constant for all classes, only
P(Ci | X)=P(XI| Ci)P(Ci)

needs to be maximized
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Naive Bayesian Classification

e Note that the class prior probabilities may be
estimated by P(C;)=|C, p,|/|D],
— Where /C, p/is the number of training tuples of class C;
n D.
e If the class prior probabilities are not known, then
it is commonly assumed that the classes are
equally likely,

— thatis, P(C,) = P(C,) = = P(C,), and we would
therefore maximize P(X/C).
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Naive Bayesian Classification

e A simplified assumption: attributes are
conditionally independent (i.e., no dependence
relation between attributes):

n
RXIG)= 1 Rx |G)=Rx |GXAx |G)x-XAx 1G)
k=1

e This greatly reduces the computation cost: Only
counts the class distribution
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Naive Bayesian Classification

e If A, is categorical

— P(x(|G;) is the # of tuples in C; having value x, for A,
divided by |G, p| (# of tuples of G; in D)

e If A, is continous-valued

— P(x,|G) is usually computed based on Gaussian
distribution with a mean y and standard deviation o:

1 _(x_/u)z
g(x, U,0) = e > BN =L Z( )
N2TTO HZE;X;‘ o= n-1% XiTH

— and P(x,|C)) is
Ax 1 G) =8 - O)
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Example: A//Electronics

RID  age income  student credit_rating  Class: buys_computer
I youth high no fair no
2 youth high no excellent no
3 middle_aged  high no tair yes
4 senior medium  no fair ves
5 senior low yes fair yes
6 senior low ves excellent no
7 middle_aged low ves excellent yes
8 youth medium  no tair no
9 youth low ves tair ves
10 senlor medium  yes fair yes
11 youth medium  ves excellent ves
12 middle_aged medium no excellent yes
13 middle_aged  high ves fair yes
14 senior medium  no excellent no
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Example: A//Electronics

e Let C7 correspond to the class buys computer =
yes and CZ2correspond to buys computer = no.

e The tuple we wish to classify is

X = (age = youth, income = medium, student = yes,
credit rating = fair)

e We need to maximize P(X/Ci)P(Ci), fori= 1, 2.

e P(Ci), the prior probability of each class, can be
computed based on the training tuples:
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Example: A//Electronics

e P(C): P(buys_computer = “yes”) =9/14 = 0.643
P(buys_computer = “no”) = 5/14= 0.357

e Compute P(X|C,) for each class

(age = “<=30" | buys_computer = “yes”) = 2/9 = 0.222

(age = “<= 30" | buys_computer = “no”) = 3/5 = 0.6

P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444

P(income = “medium” | buys_computer = “n0”) = 2/5 = 0.4

P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667
(student = “yes” | buys_computer = “no”) = 1/5=0.2
(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

e X =(age <= 30, income = medium, student = yes, credit_rating = fair)

P(X|C,) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
P(X|C,)*P(C;) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028
P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007
Therefore, X belongs to class (“buys_computer = yes”)
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Avoiding the 0-Probability Problem

e Naive Bayesian prediction requires each conditional prob.
be non-zero. Otherwise, the predicted prob. will be zero

n
P(XI1cy) = TIPxglcC)
k=1

e EX. Suppose a dataset with 1000 tuples, income=low (0), income=
medium (990), and income = high (10) for bus_computer = ‘yes’
e Use Laplacian correction (or Laplacian estimator)
— Adding 1 to each case
Prob(income = low) = 1/1003
Prob(income = medium) = 991/1003
Prob(income = high) = 11/1003

— The “corrected” prob. estimates are close to their “uncorrected”
counterparts
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Example: weather problem

Outlook Temperature Humidity Windy Play
yes  no yes  no yes  no yes no  yes no
sunny 2 3  hot 2 2 high 3 4  false 6 2 9 5
overcast 4 0  mild 4 2  normal 6 1 true 3 3
rainy 3 2  cool 3 1

sunny 29 35 hot 2/9 2/5 high 39 45 false 6/9 25 914 514
overcast 49 05 mild 49 2/5 normal 6/9 1/5 true 39 3h
rainy 39 25 cool 39 1/5

e E.9. Ploutlook=sunny | play=yes) = 2/9
P(winay=true | play=No) = 3/5
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Probabilities for weather data

e A new day:
Outlook Temperature Humidity Windy Play
sunny coal high true 7

likelihood of yes = 2/9x 3/9x 3/9x 3/9x9/14=0.0053.
likelihood of no =3/5x1/5x 4/5 x 3/5x 5/14=0.0206.
e Conversion into a probability by normalization:

. 0.0053
Probability of yes = e -=20.5%,
| 0.00534+0.0206
- 0.0206 _
Probability of no = ” =79.5%.

0.0053+0.0206
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Bayes’s rule

e The hypothesis H (class) is that p/ay will be ‘ yes’
Pr[HX] is 20.5%
e The evidence X is the particular combination of
attribute values for the new day:
outlook = sunny
temperature = cool
humiadity = high
winay = frue

Bayesian Classification




Weather data example

Pr [ves|x] = Pr [Outlook=Sunny|yes/
XPr [Temperature=Cool|yes]
X Pr [Humidity=High|yes]
XPr [Windy=True|yes]
X Pr [ves]

Pr{ yes|x]=2/9%3/9%x3/9x3/9x9/14
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The “zero-frequency problem”

e What if an attribute value doesn’t occur with every
class value?

— e.g. “Humidity = high” for class “yes” Probability will be
zero!
P [Humidity=High | yes/=0

— A posteriori probability will also be zero!
Pr [yes | E]=0

— (No matter how likely the other values are!)

e Correction: add 1 to the count for every attribute
value-class combination (Lap/ace estimartor)

e Result: probabilities will never be zero!

Bayesian Classification




Modified probability estimates

e In some cases adding a constant different from 1
might be more appropriate

e Example: attribute outlook for class ‘yes’

2+u1/3  4+u/3 3+1/3
9+u 9+uU 9+Lu

Sinny overcast raimny

e Weights don’t need to be equal but they must
sumto 1 (p1, p2, and p3 sumto 1)

2+up,  A+Up,  3+up;
9+ U 9+ U 9+
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Missing values

e Training: instance is not included in frequency count for
attribute value-class combination

e Classification: attribute will be omitted from calculation

e Example: if the value of outlook were missing in the
example

Outlook Temperature Humidity Windy Play

? cool high true ?

— Likelihood of “yes” = 3/9 x 3/9 x 3/9 x 9/14 = 0.0238
— Likelihood of “no” = 1/5 x 4/5 x 3/5 x 5/14 = 0.0343
— P(“yes”) =0.0238 / (0.0238 + 0.0343) = 41%

— P(“n0”) = 0.0343 / (0.0238 + 0.0343) = 59%
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Numeric attributes

e Usual assumption: attributes have a normalor Gaussian
probability distribution

e The probability density function for the normal distribution
Is defined by two parameters:

o Sample mean u 1 :li X,
nis
e Stanaard deviation o 1 & ,
g= 1’_)— ( Xg_#)
- L=

e Then the density function 7#(x) is:

1 (x—1)
X)= e 2
f(x) e
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Statistics for weather data

Outlook Temperature Humidity Windy Play
yes no yes  no yes  no yes no yes  no
sunny 2 3 83 85 86 85  false 6 2 9 5
overcast 4 0 10 80 96 90 true 3 3
rainy 3 2 68 65 80 70
64 72 65 95
69 71 70 91
75 80
75 70
72 90
81 75
sunny 2/9 3/5 mean 73 746 mean 79.1 86.2 false 6/9 2/5 9/14 5/14
overcast 4/9 0/5 std dev. 6.2 79 std. dev. 102 97 true 3/9 3/5

rainy 3/9 2/5
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Example density value

e |f we are considering a yes outcome when
temperature has a value of 66

e We just need to plug x =66, 4=73,and 0=6.2
Into the formula

e The value of the probability density function is:

(66=73)°

e 2620 =(.0340

1
N2 6.2

f (temperature =66 |yes) =
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Classifying a new day

e A new day:
Outlook Temperature Humidity Windy Play
sunny 66 90 true ?

likelihood of yes = 2/9x 0.0340 x 0.0221 X 3/9 x 9/14 = 0.000036
likelihood of 10 = 3/5 x 0.0221 x 0.0381x 3/5 x 5/14=0.000108

0.000036
Probability of yes = _ ’ =25.0%
| 0.000036+0.000108
0.000108
Probability of no = =75.0%

0.000036+0.000108
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Missing values

e Missing values during training are not included in
calculation of mean and standard deviation
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Naive Bayesian Classifier: Comments

e Advantages

— Easy to implement

— Good results obtained in most of the cases
e Disadvantages

— Assumption: class conditional independence,
therefore loss of accuracy

— Practically, dependencies exist among variables
e How to deal with these dependencies?
— Bayesian Belief Networks
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The end
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