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Introduction

� Bayesian classifiers are statistical classifiers. 

� They can predict class membership probabilities, 
such as the probability that a given instance belongs 
to a particular class.

� Bayesian classification is based on Bayes’ theorem

Bayesian classifiers have also exhibited high 
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� Bayesian classifiers have also exhibited high 
accuracy and speed when applied to large 
databases.

� Popular methods:

– Naïve Bayesian classifier

– Bayesian belief networks



Introduction

� Naïve Bayesian classifier

– Naïve Bayesian classifiers assume that the effect of 
an attribute value on a given class is independent of 
the values of the other attributes.

– This assumption is called class conditional 
independence.

Bayesian Classification

independence.

– It is made to simplify the computations involved and, 
in this sense, is considered “naïve.”

– Naïve Bayesian classifier, has comparable 
performance with decision tree and selected neural 
network classifiers



Introduction

� Bayesian belief networks

– Bayesian belief networks are graphical models, which 
unlike naïve Bayesian classifiers, allow the 
representation of dependencies among subsets of 
attributes.

– Bayesian belief networks can also be used for 
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– Bayesian belief networks can also be used for 
classification.



Bayes’ Theorem
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Bayesian Theorem

� Let X be a data sample (“evidence”): class label is 

unknown

� Let H be a hypothesis that X belongs to class C 

� Classifier determine P(H|X), the probability that the 

hypothesis holds given the observed data sample X
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hypothesis holds given the observed data sample X

� P(H) (prior probability), the initial probability

– E.g., X will buy computer, regardless of age, income, 

…

� P(X): probability that sample data is observed



Bayesian Theorem

� P(X|H) (posteriori probability), the probability of 

observing the sample X, given that the hypothesis 

holds

– E.g., Given that X will buy computer, the prob. that X 

is 31..40, medium income

X
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� Given training data X, posteriori probability of a 

hypothesis H, P(H|X), follows the Bayes theorem
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Naïve Bayesian Classification

� Naïve bayes classifier use all the attributes 

� Two assumptions: Attributes are

– equally important

– statistically independent 

� I.e., knowing the value of one attribute says nothing about the 
value of another
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value of another

� Equally important & independence assumptions 

are never correct in real-life datasets



Naïve Bayesian Classification

� Let D be a training set of instances and their 

associated class labels, and each instance is 

represented by an n-dimentional attribute vector 

X = (x1, x2, …, xn)

� Suppose there are m classes C1, C2, …, Cm.
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� Naïve Bayesian classifier will predict that X 
belongs to the class having the highest posterior 

probability, conditioned on X, i.e., the maximal 

P(Ci|X)



Naïve Bayesian Classification

� The posterior probability can be derived from 
Bayes’ theorem

Since P(X) is constant for all classes, only
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� Since P(X) is constant for all classes, only

needs to be maximized
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Naïve Bayesian Classification

� Note that the class prior probabilities may be 

estimated by P(Ci)=|Ci,Dj|/|D|,

– Where |Ci,D| is the number of training tuples of class Ci

in D.

� If the class prior probabilities are not known, then 

it is commonly assumed that the classes are 
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it is commonly assumed that the classes are 

equally likely, 

– that is, P(C1) = P(C2) = = P(Cm), and we would 
therefore maximize P(X|Ci).



Naïve Bayesian Classification

� A simplified assumption: attributes are 
conditionally independent (i.e., no dependence 
relation between attributes):
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� This greatly reduces the computation cost: Only 
counts the class distribution

1k=



Naïve Bayesian Classification

� If Ak is categorical

– P(xk|Ci) is the # of tuples in Ci having value xk for Ak

divided by |Ci, D| (# of tuples of Ci in D)

� If Ak is continous-valued

– P(xk|Ci) is usually computed based on Gaussian 
distribution with a mean µ and standard deviation σ:
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distribution with a mean µ and standard deviation σ:

– and P(xk|Ci) is 
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Example: AllElectronics

� Let C1 correspond to the class buys_computer = 
yes and C2 correspond to buys_computer = no. 

� The tuple we wish to classify is

X = (age = youth, income = medium, student = yes, 
credit rating = fair)
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� We need to maximize P(X|Ci)P(Ci), for i = 1, 2. 

� P(Ci), the prior probability of each class, can be 
computed based on the training tuples:



Example: AllElectronics

� P(Ci):    P(buys_computer = “yes”)  = 9/14 = 0.643

P(buys_computer = “no”) = 5/14= 0.357

� Compute P(X|Ci) for each class
P(age = “<=30” | buys_computer = “yes”)  = 2/9 = 0.222

P(age = “<= 30” | buys_computer = “no”) = 3/5 = 0.6

P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444

P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4

P(student = “yes” | buys_computer = “yes) = 6/9 = 0.667

P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2
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P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2

P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667

P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

� X = (age <= 30 , income = medium, student = yes, credit_rating = fair)

P(X|Ci) : P(X|buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044

P(X|buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019

P(X|Ci)*P(Ci) : P(X|buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028

P(X|buys_computer = “no”) * P(buys_computer = “no”) = 0.007

Therefore,  X belongs to class (“buys_computer = yes”)



Avoiding the 0-Probability Problem

� Naïve Bayesian prediction requires each conditional prob. 
be non-zero.  Otherwise, the predicted prob. will be zero

� Ex. Suppose a dataset with 1000 tuples, income=low (0), income= 
medium (990), and income = high (10) for bus_computer = ‘yes’
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medium (990), and income = high (10) for bus_computer = ‘yes’

� Use Laplacian correction (or Laplacian estimator)

– Adding 1 to each case

Prob(income = low) = 1/1003

Prob(income = medium) = 991/1003

Prob(income = high) = 11/1003

– The “corrected” prob. estimates are close to their “uncorrected” 
counterparts



Example: weather problem
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� E.g. P(outlook=sunny | play=yes) = 2/9

P(windy=true | play=No) = 3/5



Probabilities for weather data

� A new day:
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� Conversion into a probability by normalization:



Bayes’s rule

� The hypothesis H (class) is that play will be ‘yes’
Pr[H|X] is 20.5%

� The evidence X is the particular combination of 

attribute values for the new day:

outlook = sunny
temperature = cool

Bayesian Classification

temperature = cool
humidity = high
windy = true



Weather data example
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The “zero-frequency problem”

� What if an attribute value doesn’t occur with every 
class value?

– e.g. “Humidity = high” for class “yes” Probability will be 
zero! 
P [Humidity=High | yes]=0

– A posteriori probability will also be zero!
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– A posteriori probability will also be zero!
Pr [yes | E]=0

– (No matter how likely the other values are!)

� Correction: add 1 to the count for every attribute 
value-class combination (Laplace estimator)

� Result: probabilities will never be zero!



Modified probability estimates

� In some cases adding a constant different from 1 

might be more appropriate

� Example: attribute outlook for class ‘yes’
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� Weights don’t need to be equal but they must 

sum to 1 (p1, p2, and p3 sum to 1)



Missing values

� Training: instance is not included in frequency count for 

attribute value-class combination

� Classification: attribute will be omitted from calculation

� Example: if the value of outlook were missing in the 

example
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– Likelihood of “yes” = 3/9 x 3/9 x 3/9 x 9/14 = 0.0238

– Likelihood of “no” = 1/5 x 4/5 x 3/5 x 5/14 = 0.0343

– P(“yes”) = 0.0238 / (0.0238 + 0.0343) = 41%

– P(“no”) = 0.0343 / (0.0238 + 0.0343) = 59%



Numeric attributes

� Usual assumption: attributes have a normal or Gaussian 
probability distribution

� The probability density function for the normal distribution 
is defined by two parameters:

� Sample mean µ
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� Standard deviation σ

� Then the density function f(x) is:



Statistics for weather data
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Example density value

� If we are considering a yes outcome when 

temperature has a value of 66

� We just need to plug x = 66, µ = 73, and σ = 6.2 

into the formula

� The value of the probability density function is:
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Classifying a new day

� A new day:
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Missing values

� Missing values during training are not included in 

calculation of mean and standard deviation
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Naïve Bayesian Classifier: Comments

� Advantages 

– Easy to implement 

– Good results obtained in most of the cases

� Disadvantages

– Assumption: class conditional independence, 
therefore loss of accuracy
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therefore loss of accuracy

– Practically, dependencies exist among variables 

� How to deal with these dependencies?

– Bayesian Belief Networks



References
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The end
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