
Data Mining

3.5 Lazy Learners
(Instance-Based Learners)

Lazy Learners

(Instance-Based Learners)

Fall 2008

Instructor: Dr. Masoud Yaghini

Outline

� Introduction

� k-Nearest-Neighbor Classifiers

� References

Lazy Learners

Introduction

Lazy Learners

Introduction

� Lazy vs. eager learning

– Eager learning

� e.g. decision tree induction, Bayesian classification, rule-
based classification

� Given a set of training set, constructs a classification model
before receiving new (e.g., test) data to classify

Lazy Learners

– Lazy learning

� e.g., k-nearest-neighbor classifiers, case-based reasoning
classifiers

�Simply stores training data (or only minor processing) and
waits until it is given a new instance

� Lazy: less time in training but more time in
predicting

Introduction

� Lazy learners store training examples and delay

the processing (“lazy evaluation”) until a new

instance must be classified

� Accuracy

– Lazy method effectively uses a richer hypothesis

space since it uses many local linear functions to form

Lazy Learners

space since it uses many local linear functions to form

its implicit global approximation to the target function

– Eager: must commit to a single hypothesis that covers

the entire instance space

Example Problem: Face Recognition

� We have a database of (say) 1 million face

images

� We are given a new image and want to find the

most similar images in the database

� Represent faces by (relatively) invariant values,

Lazy Learners

e.g., ratio of nose width to eye width

� Each image represented by a large number of

numerical features

� Problem: given the features of a new face, find

those in the DB that are close in at least ¾ (say)

of the features

Introduction

� Typical approaches

– k-nearest neighbor approach

�Instances represented as points in a Euclidean space.

– Case-based reasoning

�Uses symbolic representations and knowledge-based
inference

Lazy Learners

k-Nearest-Neighbor Classifiers

Lazy Learners

k-Nearest-Neighbor Classifiers

� All instances correspond to points in the n-

dimentional space

� The training tuples are described by n attributes.

� Each tuple represents a point in an n-dimensional
space.

Lazy Learners

� A k-nearest-neighbor classifier searches the

pattern space for the k training tuples that are

closest to the unknown tuple.

k-Nearest-Neighbor Classifiers

� Example:

– We are interested in classifying the type of drug a

patient should be prescribed

– Based on the age of the patient and the patient’s

sodium/potassium ratio (Na/K)

– Dataset includes 200 patients

Lazy Learners

– Dataset includes 200 patients

Scatter plot

Lazy Learners

On the scatter plot; light gray points indicate drug Y; medium gray points indicate

drug A or X; dark gray points indicate drug B or C

Close-up of neighbors to new patient 2

� k=1 => drugs B and C (dark gray)

� k=2 => ?

� K=3 => drugs A and X (medium gray)

Lazy Learners

� Main questions:

– How many neighbors should we consider? That is,
what is k?

– How do we measure distance?

– Should all points be weighted equally, or should some
points have more influence than others?

k-Nearest-Neighbor Classifiers

� The nearest neighbor are defined in terms of
Euclidean distance, dist(X1, X2)

� The Euclidean distance between two points or tuples,
say, X1 = (x11, x12, … , x1n) and X2 = (x21, x22, ... , x2n),
is:

Lazy Learners

– Nominal attributes: distance either 0 or 1

k-Nearest-Neighbor Classifiers

� Typically, we normalize the values of each attribute in
advanced.

� This helps prevent attributes with initially large
ranges (such as income) from outweighing attributes
with initially smaller ranges (such as binary
attributes).

Lazy Learners

attributes).

� Min-max normalization:

– all attribute values lie between 0 and 1

k-Nearest-Neighbor Classifiers

� Common policy for missing values: assumed to

be maximally distant (given normalized attributes)

� Other popular metric: Manhattan (city-block)

metric

– Taking absolute differences value without squaring

them

Lazy Learners

them

k-Nearest-Neighbor Classifiers

� For k-nearest-neighbor classification, the unknown
tuple is assigned the most common class among its k
nearest neighbors.

� When k = 1, the unknown tuple is assigned the class
of the training tuple that is closest to it in pattern
space.

Lazy Learners

space.

� Nearest-neighbor classifiers can also be used for
prediction, that is, to return a real-valued prediction
for a given unknown tuple.

– In this case, the classifier returns the average value of the

real-valued labels associated with the k nearest neighbors
of the unknown tuple.

Categorical Attributes

� A simple method is to compare the corresponding

value of the attribute in tuple X1 with that in tuple

X2.

� If the two are identical (e.g., tuples X1 and X2

both have the color blue), then the difference

between the two is taken as 0, otherwise 1.

Lazy Learners

between the two is taken as 0, otherwise 1.

� Other methods may incorporate more

sophisticated schemes for differential grading

(e.g., where a difference score is assigned, say,

for blue and white than for blue and black).

Missing Values

� In general, if the value of a given attribute A is
missing in tuple X1 and/or in tuple X2, we assume
the maximum possible difference.

� For categorical attributes, we take the difference
value to be 1 if either one or both of the
corresponding values of A are missing.

Lazy Learners

corresponding values of A are missing.

� If A is numeric and missing from both tuples X1 and
X2, then the difference is also taken to be 1.

– If only one value is missing and the other (which we’ll

call v’) is present and normalized, then we can take

the difference to be either |1 - v’| or |0 – v’| , whichever

is greater.

Determining a good value for k

� k can be determined experimentally.

� Starting with k = 1, we use a test set to estimate

the error rate of the classifier.

� This process can be repeated each time by

incrementing k to allow for one more neighbor.

Lazy Learners

� The k value that gives the minimum error rate

may be selected.

� In general, the larger the number of training

tuples is, the larger the value of k will be

Finding nearest neighbors efficiently

� Simplest way of finding nearest neighbor: linear
scan of the data

– Classification takes time proportional to the product of
the number of instances in training and test sets

� Nearest-neighbor search can be done more
efficiently using appropriate data structures

Lazy Learners

efficiently using appropriate data structures

� There two methods that represent training data in
a tree structure:

– kD-trees (k-dimensional trees)

– Ball trees

kD-trees

� kD-tree is a binary tree that divides the input

space with a hyperplane and then splits each

partition again, recursively.

� The data structure is called a kD-tree because it

stores a set of points in k-dimensional space, k
being the number of attributes.

Lazy Learners

being the number of attributes.

kD-tree example

Lazy Learners

Using kD-trees: example

� The target, which is not one of the instances in the tree, is

marked by a star.

� The leaf node of the region containing the target is

colored black.

� To determine whether one

closer exists, first check

Lazy Learners

closer exists, first check

whether it is possible for a

closer neighbor to lie within

the node’s sibling.

� Then back up to the parent

node and check its sibling

More on kD-trees

� Complexity depends on depth of tree

� Amount of backtracking required depends on

quality of tree

� How to build a good tree? Need to find good split

point and split direction

Lazy Learners

– Split direction: direction with greatest variance

– Split point: median value or value closest to mean

along that direction

� Can apply this recursively

Building trees incrementally

� Big advantage of instance-based learning:

classifier can be updated incrementally

– Just add new training instance!

� We can do the same with kD-trees

� Heuristic strategy:

Lazy Learners

� Heuristic strategy:

– Find leaf node containing new instance

– Place instance into leaf if leaf is empty

– Otherwise, split leaf

� Tree should be rebuilt occasionally

References

Lazy Learners

References

� J. Han, M. Kamber, Data Mining: Concepts and

Techniques, Elsevier Inc. (2006). (Chapter 6)

� I. H. Witten and E. Frank, Data Mining: Practical

Machine Learning Tools and Techniques, 2nd

Lazy Learners

Edition, Elsevier Inc., 2005. (Chapter 6)

The end

Lazy Learners

