Data Mining

3.5 Lazy Learners (Instance-Based Learners)

Fall 2008

Instructor: Dr. Masoud Yaghini

Outline

Introduction

k-Nearest-Neighbor Classifiers

References

• Lazy vs. eager learning

Eager learning

 e.g. decision tree induction, Bayesian classification, rulebased classification

 Given a set of training set, constructs a classification model before receiving new (e.g., test) data to classify

Lazy learning

 e.g., k-nearest-neighbor classifiers, case-based reasoning classifiers

 Simply stores training data (or only minor processing) and waits until it is given a new instance

Lazy: less time in training but more time in predicting

- Lazy learners store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- Accuracy
 - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form its implicit global approximation to the target function
 - Eager: must commit to a single hypothesis that covers the entire instance space

Example Problem: Face Recognition

- We have a database of (say) 1 million face images
- We are given a new image and want to find the most similar images in the database
- Represent faces by (relatively) invariant values, e.g., ratio of nose width to eye width
- Each image represented by a large number of numerical features
- Problem: given the features of a new face, find those in the DB that are close in at least ³/₄ (say) of the features

- Typical approaches
 - <u>k-nearest neighbor approach</u>
 - Instances represented as points in a Euclidean space.
 - Case-based reasoning

Uses symbolic representations and knowledge-based inference

- All instances correspond to points in the ndimentional space
- The training tuples are described by *n* attributes.
- Each tuple represents a point in an n-dimensional space.
- A k-nearest-neighbor classifier searches the pattern space for the k training tuples that are closest to the unknown tuple.

- Example:
 - We are interested in classifying the type of drug a patient should be prescribed
 - Based on the age of the patient and the patient's sodium/potassium ratio (Na/K)
 - Dataset includes 200 patients

Scatter plot

On the scatter plot; light gray points indicate drug Y; medium gray points indicate drug A or X; dark gray points indicate drug B or C

Close-up of neighbors to new patient 2

- *k*=1 => drugs B and C (dark gray)
- k=2 => ?
- K=3 => drugs A and X (medium gray)

- Main questions:
 - How many neighbors should we consider? That is, what is k?
 - How do we measure distance?
 - Should all points be weighted equally, or should some points have more influence than others?

- The nearest neighbor are defined in terms of Euclidean distance, dist(X₁, X₂)
- The Euclidean distance between two points or tuples, say, X1 = (x₁₁, x₁₂, ..., x_{1n}) and X₂ = (x₂₁, x₂₂, ..., x_{2n}), is:

$$dist(X_1, X_2) = \sqrt{\sum_{i=1}^n (x_{1i} - x_{2i})^2}$$

- Nominal attributes: distance either 0 or 1

- Typically, we normalize the values of each attribute in advanced.
- This helps prevent attributes with initially large ranges (such as *income*) from outweighing attributes with initially smaller ranges (such as binary attributes).
- Min-max normalization:

$$v' = \frac{v - min_A}{max_A - min_A}$$

- all attribute values lie between 0 and 1

- Common policy for missing values: assumed to be maximally distant (given normalized attributes)
- Other popular metric: Manhattan (city-block) metric
 - Taking absolute differences value without squaring them

- For k-nearest-neighbor classification, the unknown tuple is assigned the most common class among its *k* nearest neighbors.
- When k = 1, the unknown tuple is assigned the class of the training tuple that is closest to it in pattern space.
- Nearest-neighbor classifiers can also be used for prediction, that is, to return a real-valued prediction for a given unknown tuple.
 - In this case, the classifier returns the average value of the real-valued labels associated with the *k nearest neighbors* of the unknown tuple.

Categorical Attributes

- A simple method is to compare the corresponding value of the attribute in tuple X1 with that in tuple X2.
- If the two are identical (e.g., tuples X1 and X2 both have the color *blue*), then the difference between the two is taken as 0, otherwise 1.
- Other methods may incorporate more sophisticated schemes for differential grading (e.g., where a difference score is assigned, say, for blue and white than for blue and black).

Missing Values

- In general, if the value of a given attribute A is missing in tuple X1 and/or in tuple X2, we assume the maximum possible difference.
- For categorical attributes, we take the difference value to be 1 if either one or both of the corresponding values of A are missing.
- If A is numeric and missing from both tuples X1 and X2, then the difference is also taken to be 1.
 - If only one value is missing and the other (which we'll call v') is present and normalized, then we can take the difference to be either |1 v'| or |0 v'|, whichever is greater.

Determining a good value for k

- k can be determined experimentally.
- Starting with k = 1, we use a test set to estimate the error rate of the classifier.
- This process can be repeated each time by incrementing k to allow for one more neighbor.
- The k value that gives the minimum error rate may be selected.
- In general, the larger the number of training tuples is, the larger the value of k will be

Finding nearest neighbors efficiently

- Simplest way of finding nearest neighbor: linear scan of the data
 - Classification takes time proportional to the product of the number of instances in training and test sets
- Nearest-neighbor search can be done more efficiently using appropriate data structures
- There two methods that represent training data in a tree structure:
 - kD-trees (k-dimensional trees)
 - Ball trees

*k*D-trees

- kD-tree is a binary tree that divides the input space with a hyperplane and then splits each partition again, recursively.
- The data structure is called a *kD-tree* because it stores a set of points in *k-dimensional* space, *k* being the number of attributes.

*k*D-tree example

Using kD-trees: example

- The target, which is not one of the instances in the tree, is marked by a star.
- The leaf node of the region containing the target is colored black.
- To determine whether one closer exists, first check whether it is possible for a closer neighbor to lie within the node's sibling.
- Then back up to the parent node and check *its sibling*

More on *k*D-trees

- Complexity depends on depth of tree
- Amount of backtracking required depends on quality of tree
- How to build a good tree? Need to find good split point and split direction
 - Split direction: direction with greatest variance
 - Split point: median value or value closest to mean along that direction
- Can apply this recursively

Building trees incrementally

- Big advantage of instance-based learning: classifier can be updated incrementally
 - Just add new training instance!
- We can do the same with kD-trees
- Heuristic strategy:
 - Find leaf node containing new instance
 - Place instance into leaf if leaf is empty
 - Otherwise, split leaf
- Tree should be rebuilt occasionally

References

References

• J. Han, M. Kamber, **Data Mining: Concepts and Techniques**, Elsevier Inc. (2006). (Chapter 6)

 I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd Edition, Elsevier Inc., 2005. (Chapter 6)

The end