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Introduction

� Lazy vs. eager learning

– Eager learning

� e.g. decision tree induction, Bayesian classification, rule-
based classification

� Given a set of training set, constructs a classification model 
before receiving new (e.g., test) data to classify
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– Lazy learning 

� e.g., k-nearest-neighbor classifiers, case-based reasoning 
classifiers

�Simply stores training data (or only minor processing) and 
waits until it is given a new instance

� Lazy: less time in training but more time in 
predicting



Introduction

� Lazy learners store training examples and delay 

the processing (“lazy evaluation”) until a new 

instance must be classified

� Accuracy

– Lazy method effectively uses a richer hypothesis 

space since it uses many local linear functions to form 
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space since it uses many local linear functions to form 

its implicit global approximation to the target function

– Eager: must commit to a single hypothesis that covers 

the entire instance space



Example Problem: Face Recognition

� We have a database of (say) 1 million face 

images

� We are given a new image and want to find the 

most similar images in the database

� Represent faces by (relatively) invariant values, 
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e.g., ratio of nose width to eye width

� Each image represented by a large number of 

numerical features

� Problem: given the features of a new face, find 

those in the DB that are close in at least ¾ (say) 

of the features



Introduction

� Typical approaches

– k-nearest neighbor approach

�Instances represented as points in a Euclidean space.

– Case-based reasoning

�Uses symbolic representations and knowledge-based 
inference
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k-Nearest-Neighbor Classifiers

� All instances correspond to points in the n-

dimentional space

� The training tuples are described by n attributes. 

� Each tuple represents a point in an n-dimensional 
space.

Lazy Learners

� A k-nearest-neighbor classifier searches the 

pattern space for the k training tuples that are 

closest to the unknown tuple.



k-Nearest-Neighbor Classifiers

� Example:

– We are interested in classifying the type of drug a 

patient should be prescribed

– Based on the age of the patient and the patient’s 

sodium/potassium ratio (Na/K)

– Dataset includes  200 patients
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– Dataset includes  200 patients



Scatter plot
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On the scatter plot; light gray points indicate drug Y; medium gray points indicate 

drug A or X; dark gray points indicate drug B or C



Close-up of neighbors to new patient 2

� k=1 => drugs B and C (dark gray)

� k=2 => ?

� K=3 => drugs A and X (medium gray)
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� Main questions:

– How many neighbors should we consider? That is, 
what is k?

– How do we measure distance?

– Should all points be weighted equally, or should some 
points have more influence than others?



k-Nearest-Neighbor Classifiers

� The nearest neighbor are defined in terms of 
Euclidean distance, dist(X1, X2)

� The Euclidean distance between two points or tuples, 
say, X1 = (x11, x12, … , x1n) and X2 = (x21, x22, ... , x2n), 
is:
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– Nominal attributes: distance either 0 or 1



k-Nearest-Neighbor Classifiers

� Typically, we normalize the values of each attribute in 
advanced. 

� This helps prevent attributes with initially large 
ranges (such as income) from outweighing attributes 
with initially smaller ranges (such as binary 
attributes). 
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attributes). 

� Min-max normalization:

– all attribute values lie between 0 and 1



k-Nearest-Neighbor Classifiers

� Common policy for missing values: assumed to 

be maximally distant (given normalized attributes)

� Other popular metric: Manhattan (city-block) 

metric

– Taking absolute differences value without squaring 

them
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them



k-Nearest-Neighbor Classifiers

� For k-nearest-neighbor classification, the unknown 
tuple is assigned the most common class among its k 
nearest neighbors. 

� When k = 1, the unknown tuple is assigned the class 
of the training tuple that is closest to it in pattern 
space. 
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space. 

� Nearest-neighbor classifiers can also be used for 
prediction, that is, to return a real-valued prediction 
for a given unknown tuple. 

– In this case, the classifier returns the average value of the 

real-valued labels associated with the k nearest neighbors 
of the unknown tuple.



Categorical Attributes 

� A simple method is to compare the corresponding 

value of the attribute in tuple X1 with that in tuple

X2. 

� If the two are identical (e.g., tuples X1 and X2 

both have the color blue), then the difference 

between the two is taken as 0, otherwise 1.
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between the two is taken as 0, otherwise 1.

� Other methods may incorporate more 

sophisticated schemes for differential grading 

(e.g., where a difference score is assigned, say, 

for blue and white than for blue and black).



Missing Values

� In general, if the value of a given attribute A is 
missing in tuple X1 and/or in tuple X2, we assume 
the maximum possible difference. 

� For categorical attributes, we take the difference 
value to be 1 if either one or both of the 
corresponding values of A are missing. 

Lazy Learners

corresponding values of A are missing. 

� If A is numeric and missing from both tuples X1 and 
X2, then the difference is also taken to be 1. 

– If only one value is missing and the other (which we’ll 

call v’) is present and normalized, then we can take 

the difference to be either |1 - v’| or |0 – v’| , whichever 

is greater.



Determining a good value for k

� k can be determined experimentally. 

� Starting with k = 1, we use a test set to estimate 

the error rate of the classifier. 

� This process can be repeated each time by 

incrementing k to allow for one more neighbor. 
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� The k value that gives the minimum error rate 

may be selected. 

� In general, the larger the number of training 

tuples is, the larger the value of k will be 



Finding nearest neighbors efficiently

� Simplest way of finding nearest neighbor: linear 
scan of the data

– Classification takes time proportional to the product of 
the number of instances in training and test sets

� Nearest-neighbor search can be done more 
efficiently using appropriate data structures
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efficiently using appropriate data structures

� There two methods that represent training data in 
a tree structure:

– kD-trees (k-dimensional trees)

– Ball trees



kD-trees

� kD-tree is a binary tree that divides the input 

space with a hyperplane and then splits each 

partition again, recursively.

� The data structure is called a kD-tree because it 

stores a set of points in k-dimensional space, k 
being the number of attributes.
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being the number of attributes.



kD-tree example
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Using kD-trees: example

� The target, which is not one of the instances in the tree, is 

marked by a star.

� The leaf node of the region containing the target is 

colored black.

� To determine whether one 

closer exists, first check 
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closer exists, first check 

whether it is possible for a 

closer neighbor to lie within 

the node’s sibling.

� Then back up to the parent 

node and check its sibling



More on kD-trees

� Complexity depends on depth of tree

� Amount of backtracking required depends on 

quality of tree 

� How to build a good tree? Need to find good split 

point and split direction
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– Split direction: direction with greatest variance

– Split point: median value or value closest to mean 

along that direction

� Can apply this recursively



Building trees incrementally

� Big advantage of instance-based learning: 

classifier can be updated incrementally

– Just add new training instance!

� We can do the same with kD-trees

� Heuristic strategy:
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� Heuristic strategy:

– Find leaf node containing new instance

– Place instance into leaf if leaf is empty

– Otherwise, split leaf 

� Tree should be rebuilt occasionally
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The end

Lazy Learners


