Data Mining

3.7 Neural Networks

Fall 2008

Instructor: Dr. Masoud Yaghini

Outline (I)

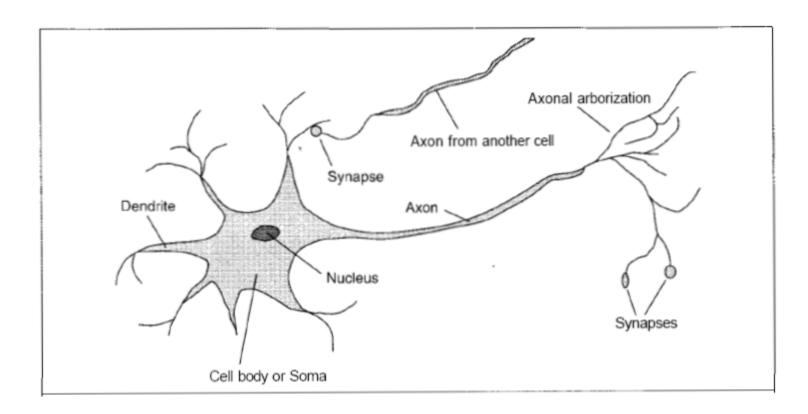
- How the Brain Works
- Artificial Neural Networks
- Simple Computing Elements
- Network Structures
- Perceptrons
- Perceptron Learning Method
- Backpropagation
- Defining a Network Topology
- Backpropagation Algorithm

Outline (II)

- Backpropagation and Interpretability
- Discussion
- References

- Neuron, or nerve cell, is the fundamental functional unit of all nervous system tissue, including the brain.
- There 10¹¹ neurons in the human brain
- Neuron components
 - Soma (cell body): provides the support functions and structure of the cell, that contains a cell nucleus.
 - Dendrites: consist of more branching fibers which receive signal from other nerve cells
 - Axon: a branching fiber which carries signals away from the neuron that connect to the dendrites and cell bodies of other neurons.
 - Synapse: The connecting junction between axon and dendrites.

• The parts of a nerve cell or neuron. In reality, the length of the axon should be about 100 times the diameter of the cell body.



Neuron Firing Process

- 1) Synapse receives incoming signals, change electrical potential of cell body
- 2) When a potential of cell body reaches some limit, neuron "fires", electrical signal (action potential) sent down axon
- 3) Axon propagates signal to other neurons, downstream

- Synapse
 - Excitatory synapse: increasing potential
 - Synaptic connection: plasticity
 - Inhibitory synapse: decreasing potential
- new connections or migration of neurons
 - Neurons also form new connections with other neurons
 - Sometimes entire collections of neurons can migrate from one place to another.
 - These mechanisms are thought to form the basis for learning in the brain.
- A collection of simple cells can lead to thoughts, action, and consciousness.

Comparing brains with digital computers

- Advantages of a human brain vs. a computer
 - Parallelism: all the neurons and synapses are active simultaneously, whereas most current computers have only one or at most a few CPUs.
 - More fault-tolerant: A hardware error that flips a single bit can doom an entire computation, but brain cells die all the time with no ill effect to the overall functioning of the brain.
 - Inductive algorithm: To be trained using an inductive learning algorithm

- Approximation of biological neural nets by ANN
- Started by psychologists and neurobiologists to develop and test computational analogues of neurons
- Other names: connectionist learning, parallel distributed processing, neural computation, adaptive networks, and collective computation

Units

- A neural network is composed of a number of nodes, or units
- Metaphor for nerve cell body

Links

- Units connected by links.
- Links represent synaptic connections from one unit to another

Weight

Each link has a numeric weight

- Weights are the primary means of long-term storage in neural networks
- Learning usually takes place by adjusting the weights.
- Some of the units are connected to the external environment, and can be designated as input or output units.

- Each unit has a set of input links from other units, a set of output links to other units, a current **activation level**, and a means of computing the activation level at the next step in time, given its inputs and weights.
- The idea is that each unit does a local computation based on inputs from its neighbors, but without the need for any global control over the set of units as a whole.

- To build a neural network to perform some task first must decide
 - how many units are to be used
 - what kind of units are appropriate
 - how the units are to be connected to form a network.

Then

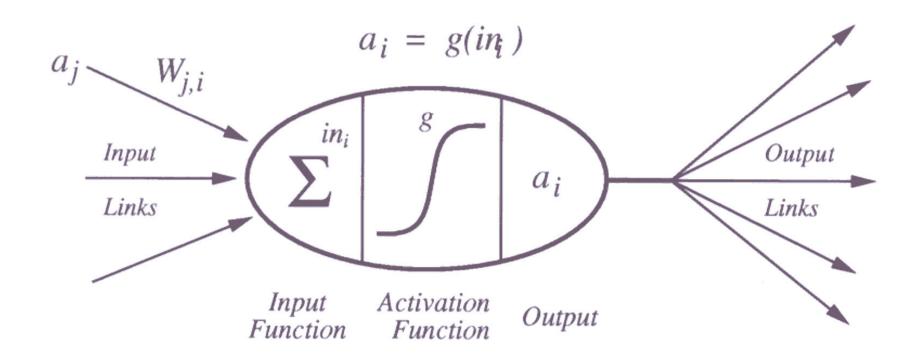
- initializes the weights of the network, and
- trains the weights using a learning algorithm applied to a set of training examples for the task.
- The use of examples also implies that one must decide how to encode the examples in terms of inputs and outputs of the network.

- Neural networks can be used for both
 - supervised learning, and
 - unsupervised learning
- For supervised learning neural networks can be used for both
 - classification (to predict the class label of a given tuple) and
 - prediction (to predict a continuous-valued output).
- In this chapter we want to discuss about application of neural networks for supervised learning

- Each unit performs a simple process:
 - Receives n-inputs
 - Multiplies each input by its weight
 - Applies activation function to the sum of results
 - Outputs result

- Two computational components
 - Linear component: **input function**, that in_i , that computes the weighted sum of the unit's input values.
 - Nonlinear component: **activation function**, g, that transforms the weighted sum into the final value that serves as the unit's activation value, a_i
 - Usually, all units in a network use the same activation function.

A typical unit



 Biological Neural Network vs. Artificial Neural Network

Biological Neural Network	Artificial Neural Network
Soma / Cell body	Neuron / Node / Unit
Dendrite	Input links
Axon	Output links
Synapse	Weight

Total weighted input

$$in_i = \sum_j W_{j,i} a_j$$

- the weights on links into node i from node j are denoted by $W_{j,i}$
- The input values is called a_i

Example: Total weighted input

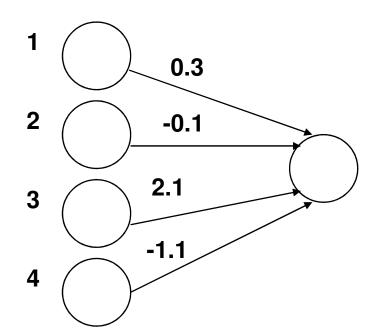
Input: (3, 1, 0, -2)

Processing:

$$3(0.3) + 1(-0.1) + 0(2.1) + -1.1(-2)$$

$$= 0.9 + (-0.1) + 2.2$$

Output: 3

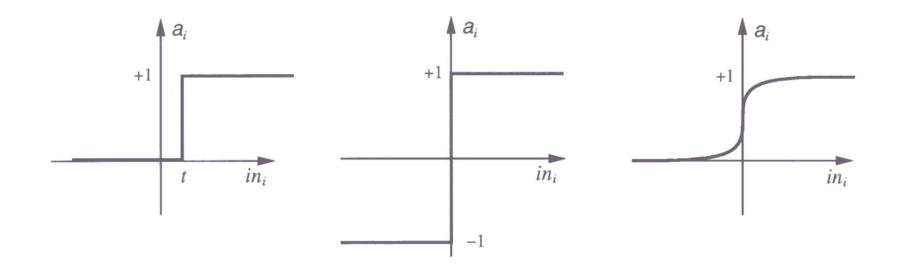


• The activation function g

$$a_i = g(in_i) = g(\sum_j W_{j,i} a_j)$$

- Three common mathematical functions for g are
 - Step function
 - Sign function
 - Sigmoid function

• Three common mathematical functions for g



(a) Step function

(b) Sign function

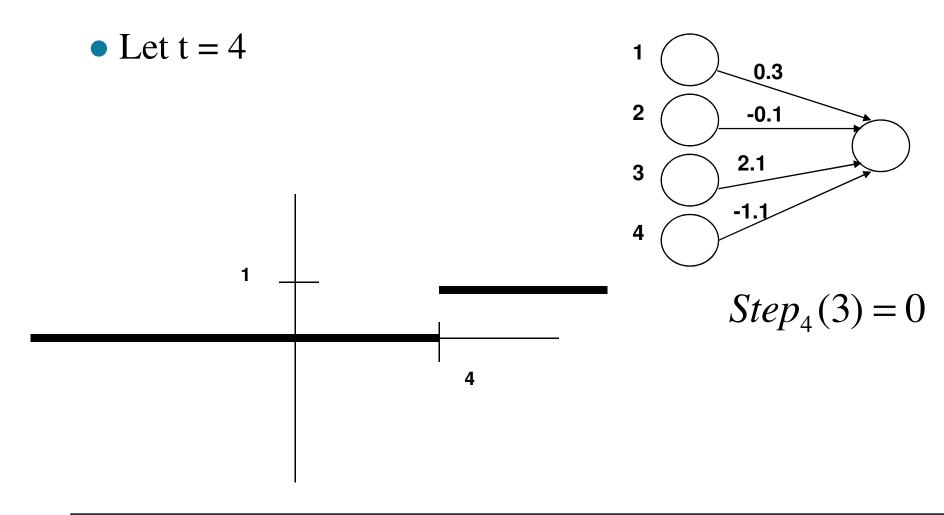
(c) Sigmoid function

$$step_{t}(x) = \begin{cases} 1, & \text{if } x \ge t \\ 0, & \text{if } x < t \end{cases} \quad sign(x) = \begin{cases} +1, & \text{if } x \ge 0 \\ -1, & \text{if } x < 0 \end{cases} \quad sigmoid(x) = \frac{1}{1 + e^{-x}}$$

Step Function

- The step function has a threshold *t* such that it outputs a 1 when the input is greater than its threshold, and outputs a 0 otherwise.
- The biological motivation is that a 1 represents the firing of a pulse down the axon, and a 0 represents no firing.
- The threshold represents the minimum total weighted input necessary to cause the neuron to fire.

Step Function Example



Step Function

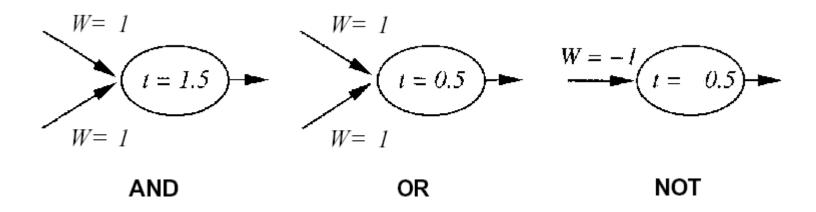
- it mathematically convenient to replace the threshold with an extra input weight.
- Because it need only worry about adjusting weights, rather than adjusting both weights and thresholds.
- Thus, instead of having a threshold t for each unit, we add an extra input whose activation a_0

$$a_i = step_t(\sum_{j=1}^n W_{j,i}a_j) = step_0(\sum_{j=0}^n W_{j,i}a_j)$$

Where
$$W_{0,i} = t$$
 and $a_0 = -1$ \leftarrow fixed

Step Function

- The Figure shows how the Boolean functions *AND*, *OR*, and *NOT* can be represented by units with a step function and suitable weights and thresholds.
- This is important because it means we can use these units to build a network to compute any Boolean function of the inputs.



Sigmoid Function

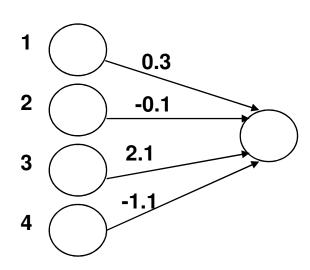
 A sigmoid function often used to approximate the step function

$$f(x) = \frac{1}{1 + e^{-\sigma x}}$$

o: the steepness parameter

Sigmoid Function

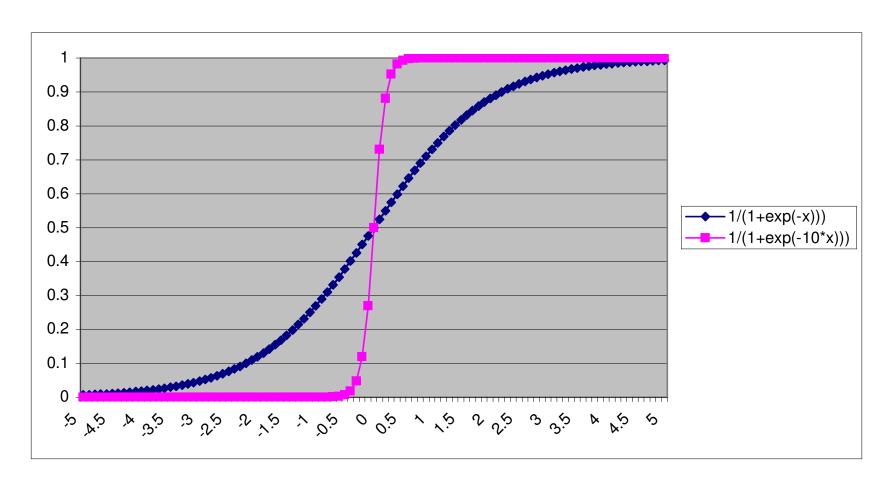
• *Input*: (3, 1, 0, -2), $\sigma = 1$



$$f(x) = \frac{1}{1 + e^{-\sigma x}}$$

$$f(3) = \frac{1}{1 + e^{-x}} \approx .95$$

Sigmoid Function

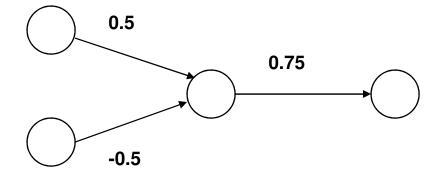


sigmoidal(0) = 0.5

Another Example

- A two weight layer, feedforward network
- Two inputs, one output, one 'hidden' unit
- *Input*: (3, 1)

$$f(x) = \frac{1}{1 + e^{-x}}$$



• What is the output?

Computing in Multilayer Networks

- Start at leftmost layer
 - Compute activations based on inputs
- Then work from left to right, using computed activations as inputs to next layer
- Example solution
 - Activation of hidden unit

•
$$f(0.5(3) + -0.5(1)) =$$

$$- f(1.5 - 0.5) =$$

$$- f(1) = 0.731$$

$$f(x) = \frac{1}{1 + e^{-x}}$$

Output activation

•
$$f(0.731(0.75)) =$$
 $- f(0.548) = .634$

Network Structures

Network Structures

Two main kinds of network structure are

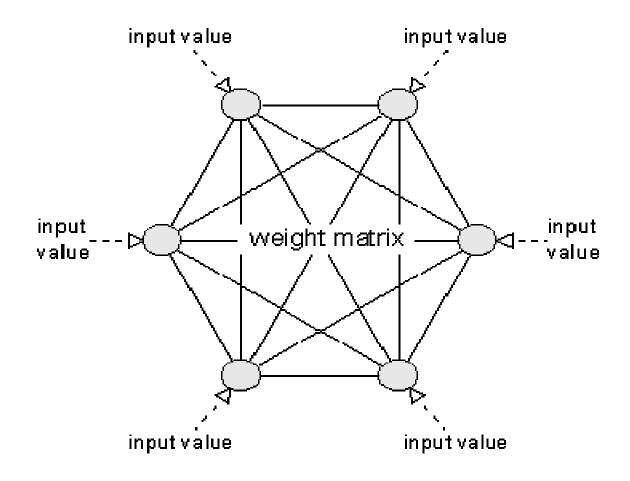
Recurrent networks

- The links can form arbitrary topologies
- Long computation time
- Need advanced mathematical method
- The Brain similar to Recurrent Network has backward link

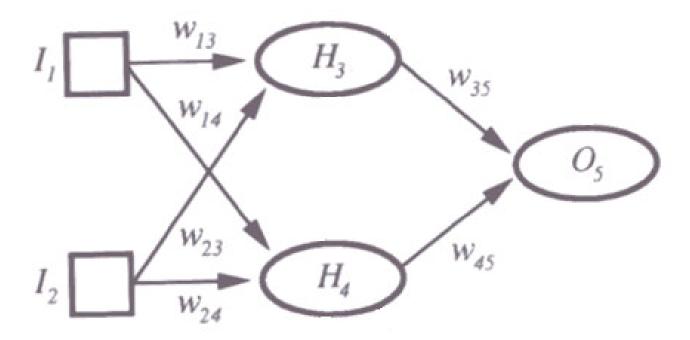
Feed-forward networks

- Unidirectional links, no cycles
- Directed acyclic graph (DAG)
- ◆ No links between units in the same layer, no links backward to a previous layer, no links that skip a layer.
- Uniformly processing from input units to output units

• An example of recurrent network (Hopfield Net)



• An example: A very simple, two-layer, feed-forward network with two inputs, two hidden nodes, and one output node.



- Because the input units (square nodes) simply serve to pass activation to the next layer, they are not counted
- Input, output, and hidden units
 - input units: the activation value of each of these units is determined by the environment.
 - output units: at the right-hand end of the network units
 - hidden units: they have no direct connection to the outside world.

- Types of feed-forward networks:
 - Perceptrons: no hidden units, This makes the learning problem much simpler, but it means that perceptrons are very limited in what they can represent.
 - Multilayer networks: one or more hidden units

- Feed-forward networks have a fixed structure and fixed activation functions g
- Therefore, the functions have a specific parameterized structure
- The weights chosen for the network determine which of these functions is actually represented.
- For example, the network calculates the following function:

$$a_5 = g(W_{3,5}a_3 + W_{4,5}a_4)$$

= $g(W_{3,5}g(W_{1,3}a_1 + W_{2,3}a_2) + W_{4,5}g(W_{1,4}a_1 + W_{2,4}a_2))$

- where g is the activation function, a_i and , is the output of node i.

What neural networks do

- Because the activation functions g are nonlinear, the whole network represents a complex nonlinear function.
- If you think of the weights as parameters or coefficients of this function, then learning just becomes:
 - a process of tuning the parameters to fit the data in the training set—a process that statisticians call nonlinear regression.

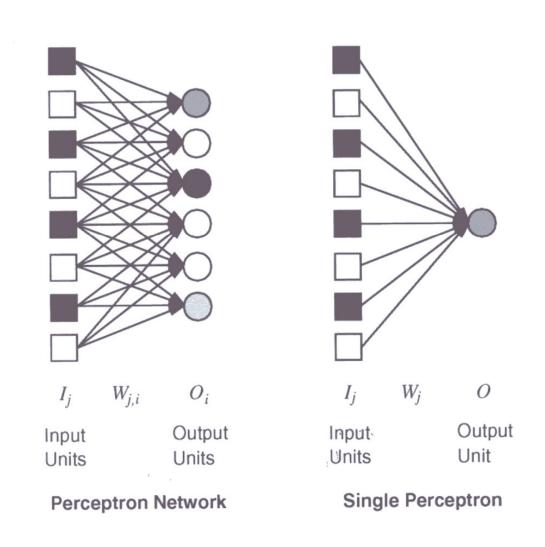
Optimal Network Structure

- Too small network: in capable of representation
- Too big network: not generalized well
 - Overfitting when there are too many parameters.
- Feed forward NN with one hidden layer
 - can approximate any continuous function
- Feed forward NN with 2 hidden layer
 - can approximate any function

Optimal Network Structure

- Using **genetic algorithm**: for finding a good network structure
- Hill-climbing search (modifying an existing network structure)
 - Start with a big network: optimal brain damage algorithm
- Removing weights from fully connected model
 - Start with a small network: tiling algorithm
- Start with single unit and add subsequent units
- Cross-validation techniques: are useful for deciding when we have found a network of the right size.

- Layered feed-forward networks
- were first studied in the late 1950s
- the name **perceptron** is usually used as a synonym for a single-layer, feed-forward network.



- Notice that each output unit is independent of the others — each weight only affects one of the outputs.
- That means that we can limit our study to perceptrons with a single output unit, as in the right-hand side of the Figure
- and we can use several of them to build up a multioutput perceptron.

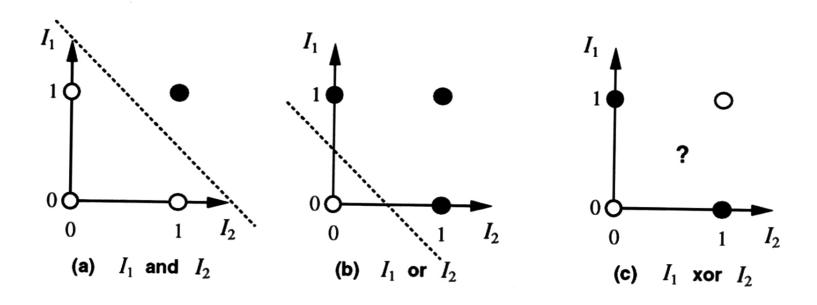
Activation of output unit:

$$O = Step_0 \left(\frac{1}{i} W_j I_j \right) = Step_0 (\mathbf{W} \cdot \mathbf{I})$$

- the weight from input unit j Wj
- The activation of input unit j is given by I_i .
- we have assumed an additional weight W_0 to provide a threshold for the step function, with $I_0 = -1$.

- Perceptrons are severely limited in the Boolean functions they can represent.
- The problem is that any input I_j can only influence the final output in one direction, no matter what the other input values are.
- Consider some input vector a.
 - Suppose that this vector has $a_j = 0$ and that the vector produces a 0 as output. Furthermore, suppose that when a_j is replaced with 1, the output changes to 1. This implies that W_j must be positive.
 - It also implies that there can be no input vector b for which the output is 1 when $b_j = 0$, but the output is 0 when b_j is replaced with 1.

• The Figure shows three different Boolean functions of two inputs, the AND, OR, and XOR functions.



• Black dots indicate a point in the input space where the value of the function is 1, and white dots indicate a point where the value is 0.

- As we will explain, a perceptron can represent a function only if there is some line that separates all the white dots from the black dots.
- Such functions are called **linearly separable.**
- Thus, a perceptron can represent AND and OR, but not XOR (if I₁ # I₂).

• The fact that a perceptron can only represent linearly separable functions follows directly from Equation:

$$O = Step_0 \left(\frac{1}{i} W_j I_j \right) = Step_0 (\mathbf{W} \cdot \mathbf{I})$$

- A perceptron outputs a 1 only if $W \cdot I > 0$.
 - This means that the entire input space is divided in two along a boundary defined by $W \cdot I = 0$,
 - that is, a plane in the input space with coefficients given by the weights.

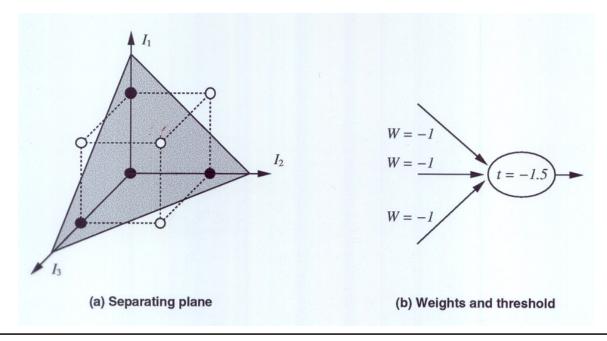
• It is easiest to understand for the case where n = 2. In Figure (a), one possible separating "plane" is the dotted line defined by the equation

$$I_1 = -I_2 + 1.5$$
 or $I_1 + I_2 = 1.5$

• The region above the line, where the output is 1, is therefore given by

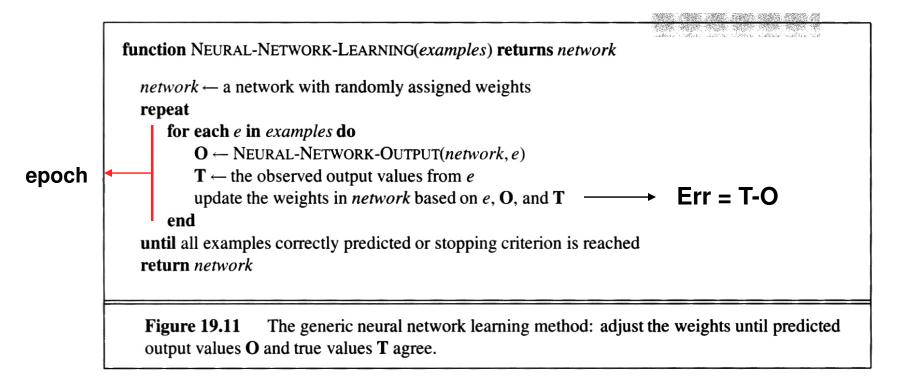
$$-1.5 + I_1 + I_2 > 0$$

- With three inputs, the separating plane can still be visualized.
- The shaded separating plane is defined by the equation I1 + I2 + I3 = 1.5
- This time the positive outputs lie below the plane, in the region (-I1) + (-I2) + (-I3) = -1.5



- The initial network has randomly assigned weights, usually from the range [-0.5,0.5].
- The network is then updated to try to make it consistent with the examples.
- This is done by making small adjustments in the weights to reduce the difference between the observed and predicted values.
- The algorithm is the need to repeat the update phase several times for each example in order to achieve convergence.
- Typically, the updating process is divided into **epochs**.
- Each epoch involves updating all the weights for all the examples.

The generic neural network learning method



- The weight update rule
 - If the predicted output for the single output unit is O, and the correct output should be T, then the error is given by

$$Err = T - O$$

- If the error is positive, then we need to increase O; if it is negative, we need to decrease 0.
- Now each input unit contributes $W_j I_j$ to the total input, so if I_j is positive, an increase in W_j will tend to increase O, and if I_j is negative, an increase in W_j will tend to decrease O.

• Thus, we can achieve the effect we want with the following rule:

$$W_{j} \leftarrow W_{j} + \alpha * I_{j} * Err$$

- α : is the learning rate
- This rule is a slight variant of the **perceptron learning rule** proposed by Frank Rosenblatt.
- Rosenblatt proved that a learning system using the perceptron learning rule will converge to a set of weights that correctly represents the examples, as long as the examples represent a linearly separable

Delta Rule for a Single Output Unit

$$\Delta W_j = \alpha (T - O) I_j$$

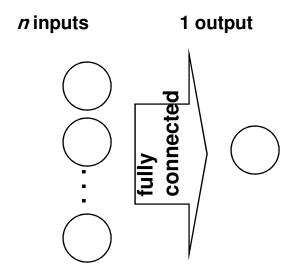
 ΔW_{j} Change in j th weight of weight vector

lpha Learning rate

Target or correct output

Net (summed, weighted) input to output unit

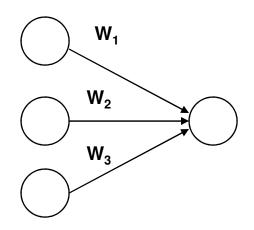
 $I_{\,i}$ j th input value



Example

- W = (W1, W2, W3)
 - Initially: W = (.5 .2 .4)
- Let $\alpha = 0.5$
- Apply delta rule

Sample	Input	Output
1	000	0
2	1 1 1	1
3	100	1
4	001	1



One Epoch of Training

Step	Input	Desired output (T)	Actual output (O)	Starting Weights	Weight updates
1	(0 0 0)	0	0	(.5 .2 .4)	
2	(1 1 1)	1			
3	(1 0 0)	1			
4	(0 0 1)	1			

Delta rule:
$$\Delta W_{j} = lpha(T-O)I_{j}$$

One Epoch of Training

Step	Input	Desired output (T)	Actual output (O)	Starting Weights	Weight updates
1	(0 0 0)	0	0	(.5 .2 .4)	W1: 0.1(0 – 0)0 W2: 0.1(0 – 0)0 W3: 0.1(0 – 0)0

Delta rule:
$$\Delta W_{j} = \alpha (T-O)l_{j}$$

delta-rule1.xls

One Epoch of Training

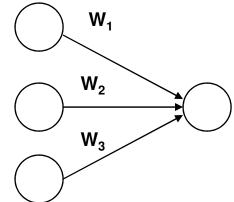
Step	Input	Desired output (T)	Actual output (O)	Starting Weights	Weight updates
1	(0 0 0)	0	0	(.5 .2 .4)	(0 0 0)
2	(1 1 1)	1		(.5 .2 .4)	
3	(1 0 0)	1			
4	(0 0 1)	1			

Remaining Steps in First Epoch of Training

Step	Input	Desired output (T)	Actual output (O)	Starting Weights	Weight updates
1	(0 0 0)	0	0	(.5 .2 .4)	(0 0 0)
2	(1 1 1)	1	1.1	(.5 .2 .4)	(050505)
3	(1 0 0)	1	.45	(.45 .15 .35)	(.275 0 0)
4	(0 0 1)	1	.35	(.725 .15 .35)	(0 0 .325)

Completing the Example

- After 18 epochs
 - Weights
 - ◆ W1= 0.990735
 - ◆ W2= -0.970018005
 - ◆ W3= 0.98147



• Does this adequately approximate the training data?

Sample	Input	Output
1	0 0 0	0
2	1 1 1	1
3	100	1
4	0 0 1	1

Example

Actual Outputs

Sample	Input	Desired Output	Actual Output
1	0 0 0	0	0
2	1 1 1	1	1.002187
3	100	1	0.990735
4	001	1	0.98147

- There is a slight difference between the example descriptions used for neural networks and those used for other attribute-based methods such as decision trees.
- In a neural network, all inputs are real numbers in some fixed range, whereas decision trees allow for multivalued attributes with a discrete set of values.
- For example, an attribute may has values *None, Some, and Full.*

• *There are* two ways to handle this.

Local encoding

- we use a single input unit and pick an appropriate number of distinct values to correspond to the discrete attribute values.
- For example, we can use None = 0.0, Some = 0.5, and Full = 1.0.

Distributed encoding

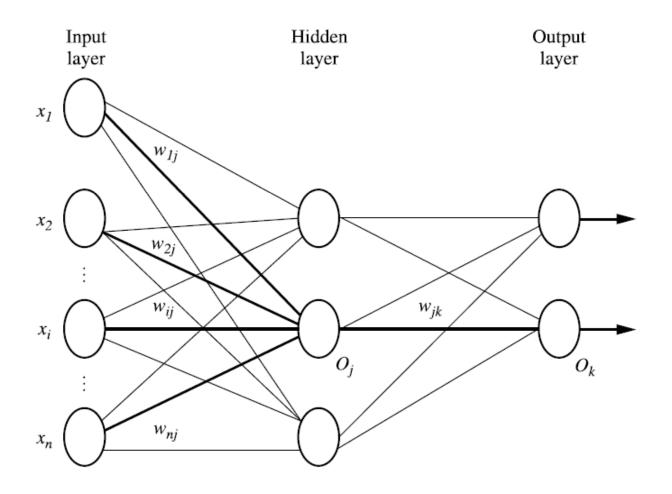
• we use one input unit for each value of the attribute, turning on the unit that corresponds to the correct value.

Backpropagation

Backpropagation

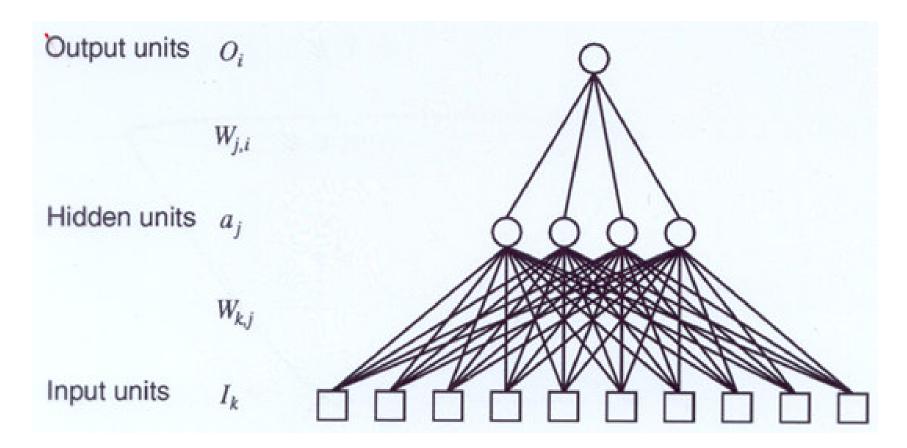
- The backpropagation algorithm performs learning on a multilayer feed-forward neural network.
- It is the most popular method for learning in multilayer networks
- Invented in 1969 by Bryson and Ho
- It iteratively learns a set of weights for prediction of the class label of tuples.
- A multilayer feed-forward neural network consists of an **input layer**, one or more **hidden layers**, and an **output layer**.

• A multilayer feed-forward neural network



- Suppose we want to construct a network for a problem.
- We have ten attributes describing each example, so we will need ten input units.
- How many hidden units are needed?
 - The problem of choosing the right number of hidden units in advance is still not well-understood.
- we use a network with four hidden units.

A two-layer feed-forward network



- Each layer is made up of units.
- The **inputs** to the network correspond to the attributes measured for each training tuple.
- Inputs are fed simultaneously into the units making up the input layer
- They are then weighted and fed simultaneously to a hidden layer
- The number of hidden layers is arbitrary, although in practice, usually only one is used.
- The weighted outputs of the last hidden layer are input to units making up the **output layer**, which sends out the network's prediction.

Neural Networks

- A two-layer neural network has a hiden layer and an output layer.
- The input layer is not counted because it serves only to pass the input values to the next layer.
- A network containing two hidden layers is called a three-layer neural network, and so on.

- The network is **feed-forward** in that none of the weights cycles back to an input unit or to an output unit of a previous layer
- From a statistical point of view, networks perform nonlinear regression
- Given enough hidden units and enough training samples, they can closely approximate any function

- Learning method is the same way as for perceptrons
 - example inputs are presented to the network, and if the network computes an output vector that matches the target, nothing is done.
 - If there is an error (a difference between the output and target), then the weights are adjusted to reduce this error.
 - The trick is to assess the blame for an error and divide it among the contributing weights.
 - In perceptrons, this is easy, because there is only one weight between each input and the output.
 - But in multilayer networks, there are many weights connecting each input to an output, and each of these weights contributes to more than one output.

- The weight update rule is very similar to the rule for the perceptron.
- There are two differences:
 - the activation of the hidden unit a_j is used instead of the input value; and
 - the rule contains a term for the gradient of the activation function.

Neural Networks

- First decide the network topology:
 - the number of units in the *input layer*,
 - the number of *hidden layers* (if > 1),
 - the number of units in each hidden layer, and
 - the number of units in the *output layer*
- Normalizing the input values for each attribute measured in the training tuples to [0.0—1.0] will help speed up the learning phase.

Input units

- One input unit per domain value, each initialized to 0
- Discrete-valued attributes may be encoded such that there is one input unit per domain value.
- For example, if an attribute A has three possible or known values, namely $\{a_0, a_1, a_2\}$, then we may assign three input units to represent A.
- That is, we may have, say, I_0 , I_1 , I_2 as input units.
- Each unit is initialized to 0. If $A=a_0$, then I_0 is set to 1, If $A=a_1$, I_1 is set to 1, and so on.

Output unit

- For classification, one output unit may be used to represent two classes (where the value 1 represents one class, and the value 0 represents the other).
- If there are more than two classes, then one output unit per class is used.

Hidden layer units

- There are no clear rules as to the "best" number of hidden layer units
- Network design is a trial-and-error process and may affect the accuracy of the resulting trained network.
- Once a network has been trained and its accuracy is unacceptable, repeat the training process with a different network topology or a different set of initial weights

- Cross-validation techniques for accuracy estimation (described later) can be used to help decide when an acceptable network has been found.
- A number of automated techniques have been proposed that search for a "good" network structure.
- These typically use a hill-climbing approach that starts with an initial structure that is selectively modified.

Backpropagation Algorithm

Neural Networks

- **Backpropagation** iteratively process a set of training tuples & compare the network's prediction with the actual known target value
- The target value may be the known class label of the training tuple (for classification problems) or a continuous value (for prediction problems).
- For each training tuple, the weights are modified to minimize the mean squared error between the network's prediction and the actual target value

- Modifications are made in the "backwards" direction
 - from the output layer, through each hidden layer down to the first hidden layer, hence "backpropagation"
 - Although it is not guaranteed, in general the weights will eventually converge, and the learning process stops.

Steps

- Initialize the weights
 - Initialize weights to small random and biases in the network
- Propagate the inputs forward
 - by applying activation function
- Backpropagate the error
 - by updating weights and biases
- Terminating condition
 - when error is very small, etc.

Backpropagation Algorithm

Algorithm:

 Backpropagation. Neural network learning for classification or prediction, using the backpropagation algorithm.

• Input:

- D, a data set consisting of the training tuples and their associated target values
- *I*, the learning rate
- network, a multilayer feed-forward network

Output:

A trained neural network.

Backpropagation Algorithm

```
(1)
      Initialize all weights and biases in network;
      while terminating condition is not satisfied {
(2)
           for each training tuple X in D {
(3)
                  // Propagate the inputs forward:
(4)
(5)
                  for each input layer unit j {
                          O_i = I_i; // output of an input unit is its actual input value
(6)
                  for each hidden or output layer unit j {
(7)
                          I_j = \sum_i w_{ij} O_i + \theta_j; //compute the net input of unit j with respect to the
(8)
                                previous layer, i
                          O_j = \frac{1}{1+e^{-I_j}}; \(\right\) // compute the output of each unit j
(9)
(10)
                  // Backpropagate the errors:
(11)
                  for each unit j in the output layer
                          Err_j = O_j(1 - O_j)(T_j - O_j); // compute the error
(12)
                  for each unit j in the hidden layers, from the last to the first hidden layer
(13)
                          Err_j = O_j(1 - O_j) \sum_k Err_k w_{jk}; // compute the error with respect to the
(14)
                                    next higher layer, k
                  for each weight w_{ij} in network {
(15)
                          \Delta w_{ij} = (l)Err_jO_i; // weight increment
(16)
                          w_{ij} = w_{ij} + \Delta w_{ij}; \(\right\) // weight update
(17)
                  for each bias \theta_i in network {
(18)
                          \Delta\theta_j = (l)Err_j; // bias increment
(19)
                          \theta_i = \theta_i + \Delta \theta_i; \(\right\) // bias update
(20)
                   } }
(21)
```

Initialize the weights

- The weights in the network are initialized to small random numbers
 - e.g., ranging from -1.0 to 1.0 or -0.5 to 0.5
- Each unit has a bias associated with it
 - The biases are similarly initialized to small random numbers.
- Each training tuple, **X**, is processed by the following steps.

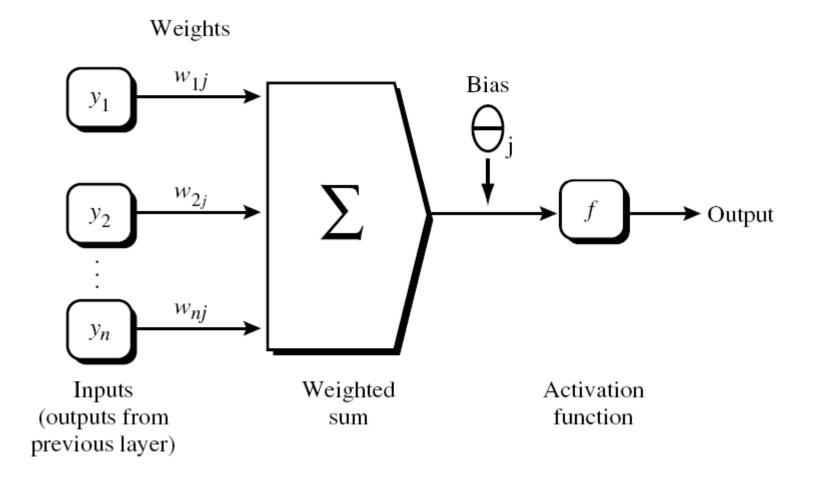
- a) determining the output of input layer units
 - the training tuple is fed to the input layer of the network.
 - The inputs pass through the input units, unchanged.
 - For an input unit, j,
 - its input value, I_i
 - its output, O_i , is equal to its input value, I_i .

- b) compute the net input of each unit in the hidden and output layers
 - The net input to a unit in the hidden or output layers is computed as a linear combination of its inputs.
 - Given a unit j in a hidden or output layer, the net input, I_{j} , to unit j is

$$I_{j} = \sum_{i} w_{ij} O_{i} + \theta_{j}$$

- where w_{ij} is the weight of the connection from unit i in the previous layer to unit j
- ◆ O_i is the output of unit i from the previous layer
- \bullet Θ_i is the bias of the unit

• A hidden or output layer unit *j*



- c) compute the output of each unit j in the hidden and output layers
 - The output of each unit is calculating by applying an activation function to its net input
 - The function symbolizes the activation of the neuron represented by the unit.
 - The **logistic**, or **sigmoid**, function is used.
 - Given the net input I_j to unit j, then O_j, the output of unit j, is computed as:

$$O_j = \frac{1}{1 + e^{-I_j}}$$

- The error is propagated backward by updating the weights and biases to reflect the error of the network's prediction.
- a) compute the error for each unit j in the output layer
 - For a unit j in the output layer, the error Err_i is computed by

$$Err_j = O_j(1 - O_j)(T_j - O_j)$$

- ◆ O_i is the actual output of unit j,
- ◆ T_i is the known target value of the given training tuple
- Note that O_i (1 O_i) is the derivative of the logistic function.

- b) compute the error for each unit j in the hidden layers, from the last to the first hidden layer
 - The error of a hidden layer unit j is

$$Err_{j} = O_{j}(1 - O_{j}) \sum_{k} Err_{k} w_{jk}$$

- w_{jk} is the weight of the connection from unit j to a unit k in the next higher layer, and
- Err_k is the error of unit k.

- c) update the weights for each weight w_{ij} in network
 - Weights are updated by the following equations

$$w_{ij} = w_{ij} + \Delta w_{ij}$$
$$\Delta w_{ij} = (l)Err_jO_i$$

- Δw_{ij} is the change in weight w_{ij}
- ◆ The variable 1 is the **learning rate**, a constant typically having a value between 0.0 and 1.0

Learning rate

- Backpropagation learns using a method of gradient descent to search for a set of weights that fits the training data so as to minimize the mean squared distance between the network's class prediction and the known target value of the tuples.
- The learning rate helps avoid getting stuck at a local minimum in decision space (i.e., where the weights appear to converge, but are not the optimum solution) and encourages finding the global minimum.
- If the learning rate is too small, then learning will occur at a very slow pace.
- If the learning rate is too large, then oscillation between inadequate solutions may occur.
- A rule of thumb is to set the learning rate to 1/t, where t is the number of iterations through the training set so far.

Neural Networks

- d) update the for each bias Θ_i in network
 - Biases are updated by the following equations below:

$$\theta_{j} = \theta_{j} + \Delta \theta_{j}$$
$$\Delta \theta_{j} = (l)Err_{j}$$

- $\Delta\Theta_i$ is the change in bias Θ_i
- Note that here we are updating the weights and biases after the presentation of each tuple.

Updating strategies:

Case updating

- updating the weights and biases after the presentation of each tuple.
- case updating is more common because it tends to yield more accurate result

Epoch updating

- the weight and bias increments could be accumulated in variables, so that the weights and biases are updated after all of the tuples in the training set have been presented.
- one iteration through the training set is an epoch.

Terminating Condition

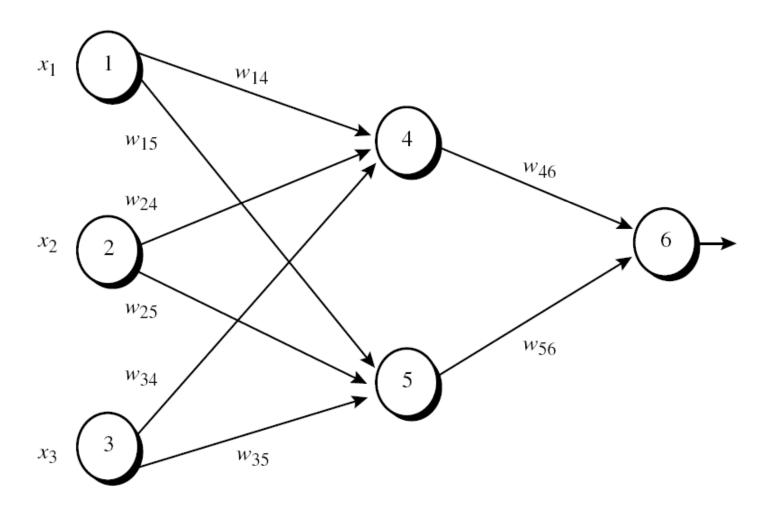
- Training stops when
 - All Δw_{ij} in the previous epoch were so small as to be below some specified threshold, or
 - The percentage of tuples misclassified in the previous epoch is below some threshold, or
 - A prespecified number of epochs has expired.
- In practice, several hundreds of thousands of epochs may be required before the weights will converge.

Efficiency of Backpropagation

- The computational efficiency depends on the time spent training the network.
- However, in the worst-case scenario, the number of epochs can be exponential in n, the number of inputs.
- In practice, the time required for the networks to converge is highly variable.
- A number of techniques exist that help speed up the training time.
 - For example, a technique known as simulated annealing can be used, which also ensures convergence to a global optimum.

Sample Calculations

• The Figure shows a multilayer feed-forward neural network



Sample Calculations

- Let the learning rate be 0.9.
- The initial weight and bias values of the network are given in the Table, along with the first training tuple, X = (1, 0, 1), whose class label is 1.

x_1	x_2	<i>x</i> ₃	w ₁₄	w ₁₅	w ₂₄	w ₂₅	w34	w35	w46	w56	θ_4	θ_5	θ_6
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

• This example shows the calculations for backpropagation, given the first training tuple, X.

Neural Networks

Sample Calculations

• The net input and output calculations:

Unit j	Net input, I_j	Output, O_j
4	0.2 + 0 - 0.5 - 0.4 = -0.7	$1/(1+e^{0.7}) = 0.332$
5	-0.3 + 0 + 0.2 + 0.2 = 0.1	$1/(1 + e^{-0.1}) = 0.525$
6	(-0.3)(0.332) - (0.2)(0.525) + 0.1 = -0.105	$1/(1 + e^{0.105}) = 0.474$

• Calculation of the error at each node:

Unit j	Err _j
6	(0.474)(1-0.474)(1-0.474) = 0.1311
5	(0.525)(1-0.525)(0.1311)(-0.2) = -0.0065
4	(0.332)(1-0.332)(0.1311)(-0.3) = -0.0087

Neural Networks

Sample Calculations

• Calculations for weight and bias updating:

Weight or bias	New value
W46	-0.3 + (0.9)(0.1311)(0.332) = -0.261
w ₅₆	-0.2 + (0.9)(0.1311)(0.525) = -0.138
w_{14}	0.2 + (0.9)(-0.0087)(1) = 0.192
w ₁₅	-0.3 + (0.9)(-0.0065)(1) = -0.306
w_{24}	0.4 + (0.9)(-0.0087)(0) = 0.4
w ₂₅	0.1 + (0.9)(-0.0065)(0) = 0.1
w ₃₄	-0.5 + (0.9)(-0.0087)(1) = -0.508
w ₃₅	0.2 + (0.9)(-0.0065)(1) = 0.194
θ_6	0.1 + (0.9)(0.1311) = 0.218
θ_5	0.2 + (0.9)(-0.0065) = 0.194
θ_4	-0.4 + (0.9)(-0.0087) = -0.408

Sample Calculations

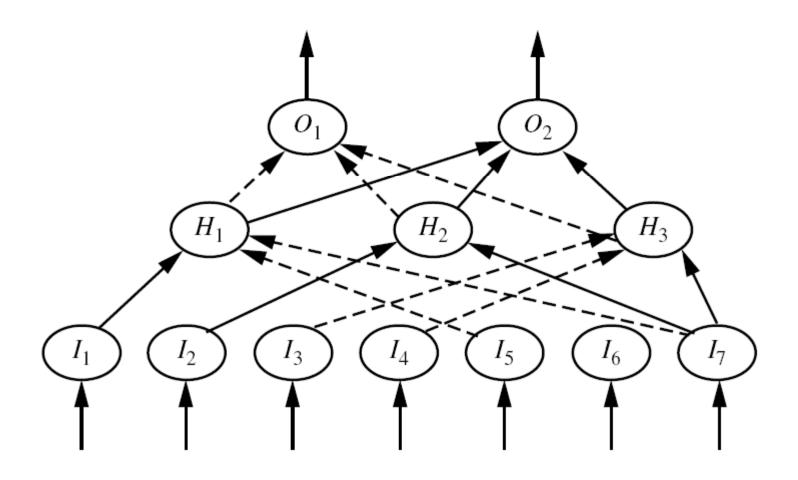
- Several variations and alternatives to the backpropagation algorithm have been proposed for classification in neural networks.
- These may involve:
 - the dynamic adjustment of the network topology and of the learning rate or
 - other parameters, or
 - the use of different error functions.

- Neural networks are like a black box.
- A major disadvantage of neural networks lies in their knowledge representation.
- Acquired knowledge in the form of a network of units connected by weighted links is difficult for humans to interpret.
- This factor has motivated research in extracting the knowledge embedded in trained neural networks and in representing that knowledge symbolically.
- Methods include:
 - extracting rules from networks
 - sensitivity analysis

- Often the first step toward extracting rules from neural networks is network pruning
 - This consists of simplifying the network structure by removing weighted links that have the least effect on the trained network.

- Rule extraction from networks
 - Often, the first step toward extracting rules from neural networks is **network pruning**.
 - ◆ This consists of simplifying the network structure by removing weighted links that have the least effect on the trained network
 - Then perform link, unit, or activation value clustering
 - In one method, for example, clustering is used to find the set of common activation values for each hidden unit in a given trained two-layer neural network.
 - The set of input and activation values are studied to derive rules describing the relationship between the input and hidden unit layers

• Rules can be extracted from training neural networks



Identify sets of common activation values for each hidden node, H_i :

```
for H_1: (-1,0,1)
for H_2: (0.1)
for H_3: (-1,0.24,1)
```

Derive rules relating common activation values with output nodes, O_i :

IF
$$(H_2 = 0 \text{ AND } H_3 = -1) \text{ OR}$$

 $(H_1 = -1 \text{ AND } H_2 = 1 \text{ AND } H_3 = -1) \text{ OR}$
 $(H_1 = -1 \text{ AND } H_2 = 0 \text{ AND } H_3 = 0.24)$
THEN $O_1 = 1$, $O_2 = 0$
ELSE $O_1 = 0$, $O_2 = 1$

Derive rules relating input nodes, I_j , to output nodes, O_i :

IF
$$(I_2 = 0 \text{ AND } I_7 = 0) \text{ THEN } H_2 = 0$$

IF $(I_4 = 1 \text{ AND } I_6 = 1) \text{ THEN } H_3 = -1$
IF $(I_5 = 0) \text{ THEN } H_3 = -1$

Obtain rules relating inputs and output classes:

IF
$$(I_2 = 0 \text{ AND } I_7 = 0 \text{ AND } I_4 = 1 \text{ AND } I_6 = 1)$$
 THEN class = 1
IF $(I_2 = 0 \text{ AND } I_7 = 0 \text{ AND } I_5 = 0)$ THEN class = 1

Sensitivity analysis

- assess the impact that a given input variable has on a network output.
- The knowledge gained from this analysis can be represented in rules
- Such as "IF X decreases 5% THEN Y increases 8%."

Discussion

Neural Networks

Discussion

- Weakness of neural networks
 - Long training time
 - Require a number of parameters typically best determined empirically, e.g., the network topology or `structure."
 - Poor interpretability: Difficult to interpret the symbolic meaning behind the learned weights and of "hidden units" in the network

Discussion

- Strength of neural networks
 - High tolerance to noisy data
 - It can be used when you may have little knowledge of the relationships between attributes and classes
 - Well-suited for continuous-valued inputs and outputs
 - Successful on a wide array of real-world data
 - Algorithms are inherently parallel
 - Techniques have recently been developed for the extraction of rules from trained neural networks

Research Areas

- Finding optimal network structure
 - e.g. by genetic algorithms
- Increasing learning speed (efficiency)
 - e.g. by simulated annealing
- Increasing accuracy (effectiveness)
- Extracting rules from networks
- Stack generalization

References

Neural Networks

References

- J. Han, M. Kamber, **Data Mining: Concepts and Techniques**, Elsevier Inc. (2006). (Chapter 6)
- S. J. Russell and P. Norvig, **Artificial Intelligence**, **A Modern Approach**, Prentice Hall,1995. (Chapter 19)

The end