Questions - Chapter 17 - Arrays

1. Fill in the blank(s) in each of the following statements:
a. Lists and tables of values can be stored in \qquad .
b. An array is a group of \qquad (called elements or components) containing values that all have the same \qquad .
c. The \qquad allows programmers to iterate through the elements in an array without using a counter.
d. The number used to refer to a particular element of an array is called the element's
\qquad .
e. An array that uses two indices is referred to as a(n) \qquad array.
2. Perform the following tasks for an array called fractions:
a. Declare a constant ARRAY_SIzE that is initialized to 10 .
b. Declare an array with ARRAY_SIZE elements of type double, and initialize the elements to 0 .
c. Refer to array element 4.
d. Assign the value 1.667 to array element 9 .
e. Assign the value 3.333 to the seventh element of the array.
f. Sum all the elements of the array, using a for statement. Declare the integer variable x as a control variable for the loop.
3. Find and correct the error in each of the following program segments:
```
a. final int ARRAY_SIZE = 5;
    ARRAY_SIZE = 10;
b. Assume int b[] = new int [ 10 ];
    for ( int i = 0; i <= b.length; i++ )
        b[ i ] = 1;
c. Assume int a[][] = { { 1, 2 }, { 3, 4 } };
    a[ 1, 2 ] = 5;
```

4. Consider a 2-by-3 integer array t .
b. Write a declaration for \mathbf{t}.
c. How many rows does \mathbf{t} have?
d. How many columns does \mathbf{t} have?
e. How many elements does \mathbf{t} have?
f. Write the names of all the elements in the second row of \mathbf{t}.
g. Write the names of all the elements in the third column of \mathbf{t}.
h. Write a single statement that sets the element of \mathbf{t} in row 1 and column 2 to zero.
i. Write a series of statements that initializes each element of \mathbf{t} to zero. Do not use a repetition structure.
j. Write a nested for structure that initializes each element of \mathbf{t} to zero.
k. Write a statement that displays the elements of the first row of \mathbf{t}.
