Data Mining Part 1. Introduction

1.3 Input

Fall 2009

Instructor: Dr. Masoud Yaghini

Outline

- Instances
- Attributes
- References

Instance:

- Individual, independent example of the concept to be learned.
- Characterized by a predetermined set of attributes
- Input to learning process: set of instances/dataset
- Each dataset is represented as a matrix of instances versus attributes
 - Represented as a single table or flat file
- Rather restricted form of input
 - No relationships between objects

- Problems often involve relationships between objects rather than separate, independent instances.
- Example:
 - a family tree is given, and we want to learn the concept *sister*.
 - This tree is the input to the learning process, along with a list of pairs of people and an indication of whether they are sisters or not.

An example: A family tree

Two ways of expressing the sister-of relation

first person	second person	sister of?	
Peter	Peggy	no	
Peter	Steven	no	
Steven	Peter	no	
Steven	Graham	no	
Steven	Pam	yes	
Steven	Grace	no	
lan	Pippa	yes	
Anna	Nikki	yes	
Nikki	Anna	yes	

first person	second person	sister of?
Steven	Pam	ves
Graham	Pam	yes
lan	Pippa	yes
Brian	Pippa	yes
Anna	Nikki	yes
Nikki	Anna	yes
All th	no	

• Neither table is of any use without the family tree itself.

Family tree represented as a table

Name	Gender	Parent1	Parent2	
Peter	male	?	?	
Peggy	female	?	?	
Steven	male	Peter	Peggy	
Graham	male	Peter	Peggy	
Pam	female	Peter	Peggy	
lan	male	Grace	Ray	

 These tables do not contain independent sets of instances because values in the Name, Parent1, and Parent2 columns refer to rows of the family tree relation.

The sister-of relation represented in a table

First person			Second person					
Name	Gender	Parent1	Parent2	Name	Gender	Parent1	Parent2	Sister of?
Steven	male	Peter	Peggy	Pam	female	Peter	Peggy	yes
Graham	male	Peter	Peggy	Pam	female	Peter	Peggy	yes
lan	male	Grace	Ray	Pippa	female	Grace	Ray	yes
Brian	male	Grace	Ray	Pippa	female	Grace	Ray	yes
Anna	female	Pam	lan	Nikki	female	Pam	lan	yes
Nikki	female	Pam	lan	Anna	female	Pam	lan	yes
			all the	rest				no

 Each of instance is an individual, independent example of the concept that is to be learned.

A simple rule for the sister-of relation

- A simple rule for the sister-of relation is as follows:
 - If second person's gender = female
 and first person's parent1 = second person's parent1
 then sister-of = yes

Denormalization

Denormalization or flattening:

- Several relations are joined together to make one
- to recast data into a set of independent instances
- Possible with any finite set of finite relations
- Problem:
 - Denormalization may produce false regularities that reflect structure of database
 - Example: "supplier" predicts "supplier address"

- The input to a data mining scheme is generally expressed as a table of independent instances of the concept to be learned.
- The instances are the rows of the tables the attributes are the columns.

Attributes

Attributes

 Each instance is described by a fixed predefined set of **features** or **attributes**

- Problem: Number of attributes may vary in different instances
 - Example: the instances were transportation vehicles
 - Possible solution: to make each possible feature an attribute and to use a special flag value to indicate that a particular attribute is not available for a particular case.

Attributes

- Another problem: existence of an attribute may depend of value of another one
 - Spouse's name depends on the value of married or single attribute

Attributes Types

- Possible attribute types ("levels of measurement"):
 - nominal
 - ordinal
 - interval
 - ratio

Nominal quantities

- Nominal attributes take on values in a prespecified, finite set of possibilities and are sometimes called categorical.
- Nominal quantities values are distinct symbols
 - Values themselves serve only as labels or names
- Example: attribute "outlook" from weather data
 - Values: "sunny", "overcast", and "rainy"
- No relation is implied among nominal values (no ordering or distance measure)
- Special case: "boolean" attribute
 - Example: true/false or yes / no

Nominal quantities

- Note: addition, subtraction, and comparing don't make sense
- Only equality tests can be performed
 - Example:

outlook:	sunny	\rightarrow	no
	overcast	\rightarrow	yes
	rainy	\rightarrow	yes

Ordinal quantities

- Ordinal quantities are ones that make it possible to rank order the categories.
- But: no distance between values defined
- Example: attribute "temperature" in weather data
 - Or: "hot" > "mild" > "cool"
- Note: it makes sense to compare two values, but addition and subtraction don't make sense
- Example rule:
 - temperature < hot => play = yes
- Distinction between nominal and ordinal not always clear (e.g. attribute "outlook")

Interval quantities

- Interval quantities are not only ordered but measured in fixed and equal units
- Example 1: attribute "temperature" expressed in degrees Fahrenheit
- **Example 2**: attribute "date" (year)
- Difference of two values makes sense
- Sum or multiplication doesn't make sense
 - E.g. sum of the years 1939 and 1945 (3884)
 - Or, three times the year 1939 (5817)

Ratio quantities

- Ratio quantities are ones for which the measurement method defines a zero point
- Example: attribute "distance"
 - Distance between an object and itself is zero
 - It does make sense to talk about three times the distance and even to multiply one distance by another to get an area.
- Ratio quantities are treated as real numbers
 - All mathematical operations are allowed

References

References

 Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd Edition, Elsevier Inc., 2005. (Chapter 2)

The end