Outline

- Introduction
- Normalization
- Attribute Construction
- Aggregation
- Attribute Subset Selection
- Discretization
- Generalization
- References

Data Transformation
Introduction
Data Transformation

- **Data transformation**
 - the data are transformed into forms appropriate for mining.

- **Data transformation tasks:**
 - Normalization
 - Attribute construction
 - Aggregation
 - Attribute Subset Selection
 - Discretization
 - Generalization
Data Transformation Tasks

- **Normalization**
 - the attribute data are scaled so as to fall within a small specified range, such as -1.0 to 1.0, 0.0 to 1.0

- **Attribute construction** (or feature construction)
 - new attributes are constructed and added from the given set of attributes to help the mining process.

- **Aggregation**
 - summary or aggregation operations are applied to the data.
 - For example, the daily sales data may be aggregated so as to compute monthly and annual total amounts.
Data Transformation Tasks

- **Discretization**
 - Dividing the range of a continuous attribute into intervals
 - For example, values for numerical attributes, like *age*, may be mapped to higher-level concepts, like *youth*, *middle-aged*, and *senior*.

- **Generalization**
 - where low-level or “primitive” (raw) data are replaced by higher-level concepts through the use of concept hierarchies.
 - For example, categorical attributes, like *street*, can be generalized to higher-level concepts, like *city* or *country*.
Normalization
Normalization

- An attribute is normalized by scaling its values so that they fall within a small specified range, such as 0.0 to 1.0.

- Normalization is particularly useful for classification algorithms involving
 - neural networks
 - distance measurements such as nearest-neighbor classification and clustering.

- If using the neural network backpropagation algorithm for classification mining, normalizing the input values for each attribute measured in the training instances will help speed up the learning phase.
Normalization

- For distance-based methods, normalization helps prevent attributes with initially large ranges (e.g., *income*) from out-weighing attributes with initially smaller ranges (e.g., binary attributes).

- **Normalization methods**
 - Min-max normalization
 - z-score normalization
 - Normalization by decimal scaling
Min-max Normalization

- **Min-max normalization**
 - performs a linear transformation on the original data.

- Suppose that:
 - min\(_A\) and max\(_A\) are the minimum and maximum values of an attribute, A.

- Min-max normalization maps a value, v, of A to v' in the range \([\text{new}_\text{min}_A, \text{new}_\text{max}_A]\) by computing:

\[
v' = \frac{v - \text{min}_A}{\text{max}_A - \text{min}_A} (\text{new}_\text{max}_A - \text{new}_\text{min}_A) + \text{new}_\text{min}_A
\]
Example: Min-max Normalization

- Let *income* range $12,000 to $98,000 normalized to [0.0, 1.0].
- Then $73,000 is mapped to

\[
\frac{73,600 - 12,000}{98,000 - 12,000} (1.0 - 0) + 0 = 0.716
\]
In z-score normalization (or zero-mean normalization)

- the values for an attribute, A, are normalized based on the mean (\(\bar{A} \)) and standard deviation (\(\sigma_A \)) of A.

A value, \(v \), of A is normalized to \(v' \) by computing

\[
v' = \frac{v - \bar{A}}{\sigma_A}
\]

Data Transformation
Example: z-score Normalization

- Let $\bar{A} = 54,000$, $\sigma_A = 16,000$, for the attribute *income*
- With z-score normalization, a value of $73,600$ for *income* is transformed to:

$$\frac{73,600 - 54,000}{16,000} = 1.225$$
Decimal Scaling

- Normalization by decimal scaling
 - normalizes by moving the decimal point of values of attribute A.
 - The number of decimal points moved depends on the maximum absolute value of A.
 - A value, v, of A is normalized to v' by computing
 $$v' = \frac{v}{10^j}$$
 - where j is the smallest integer such that $\text{Max}(|v'|) < 1$.

Data Transformation
Example: Decimal Scaling

- Suppose that the recorded values of A range from -986 to 917.
- The maximum absolute value of A is 986.
- To normalize by decimal scaling, we therefore divide each value by 1,000 (i.e., $j = 3$) so that
Normalization

- Note that normalization can change the original data quite a bit, especially the z-score method.
Attribute Construction
Attribute Construction

- **Attribute construction** (feature construction)
 - new attributes are constructed from the given attributes and added in order to help improve the accuracy and understanding of structure in high-dimensional data.

- **Example**
 - we may wish to add the attribute *area* based on the attributes *height* and *width*.

- By attribute construction can discover missing information.
Data Aggregation
Data Aggregation

- On the left, the sales are shown per quarter. On the right, the data are aggregated to provide the annual sales.
- Sales data for a given branch of *AllElectronics* for the years 2002 to 2004.

<table>
<thead>
<tr>
<th>Year</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>$1,568,000</td>
</tr>
<tr>
<td>2003</td>
<td>$2,356,000</td>
</tr>
<tr>
<td>2004</td>
<td>$3,594,000</td>
</tr>
</tbody>
</table>
Data Aggregation

- Data cubes store multidimensional aggregated information.
- Data cubes provide fast access to precomputed, summarized data, thereby benefiting on-line analytical processing as well as data mining.
- A data cube for sales at *AllElectronics*.
Attribute Subset Selection
Attribute Subset Selection

- Why attribute subset selection
 - Data sets for analysis may contain hundreds of attributes, many of which may be irrelevant to the mining task or redundant.

- For example,
 - if the task is to classify customers as to whether or not they are likely to purchase a popular new CD at AllElectronics when notified of a sale, attributes such as the customer’s telephone number are likely to be irrelevant, unlike attributes such as age or music_taste.
Attribute Subset Selection

- Using domain expert to pick out some of the useful attributes
 - Sometimes this can be a difficult and time-consuming task, especially when the behavior of the data is not well known.

- Leaving out relevant attributes or keeping irrelevant attributes result in discovered patterns of poor quality.

- In addition, the added volume of irrelevant or redundant attributes can slow down the mining process.
Attribute Subset Selection

- **Attribute subset selection** (feature selection):
 - Reduce the data set size by removing irrelevant or redundant attributes

- **Goal**:
 - select a minimum set of features (attributes) such that the probability distribution of different classes given the values for those features is as close as possible to the original distribution given the values of all features
 - It reduces the number of attributes appearing in the discovered patterns, helping to make the patterns easier to understand.
How can we find a ‘good’ subset of the original attributes?

- For n attributes, there are 2^n possible subsets.
- An exhaustive search for the optimal subset of attributes can be prohibitively expensive, especially as n increase.
- Heuristic methods that explore a reduced search space are commonly used for attribute subset selection.
- These methods are typically greedy in that, while searching through attribute space, they always make what looks to be the best choice at the time.
- Such greedy methods are effective in practice and may come close to estimating an optimal solution.
Attribute Subset Selection

- **Heuristic methods**:
 - Step-wise forward selection
 - Step-wise backward elimination
 - Combining forward selection and backward elimination
 - Decision-tree induction

- The “best” (and “worst”) attributes are typically determined using:
 - the tests of *statistical significance*, which assume that the attributes are independent of one another.
 - the *information gain* measure used in building decision trees for classification.
Attribute Subset Selection

- **Stepwise forward selection:**
 - The procedure starts with an empty set of attributes as the reduced set.
 - First: The best single-feature is picked.
 - Next: At each subsequent iteration or step, the best of the remaining original attributes is added to the set.

Initial attribute set:
\{A_1, A_2, A_3, A_4, A_5, A_6\}

Initial reduced set:
\{
\}
=> \{A_1\}
=> \{A_1, A_4\}
=> Reduced attribute set:
\{A_1, A_4, A_6\}
Stepwise backward elimination:
 - The procedure starts with the full set of attributes.
 - At each step, it removes the worst attribute remaining in the set.

Initial attribute set:
\{A_1, A_2, A_3, A_4, A_5, A_6\}

=> \{A_1, A_3, A_4, A_5, A_6\}
=> \{A_1, A_4, A_5, A_6\}
=> Reduced attribute set:
\{A_1, A_4, A_6\}
Attribute Subset Selection

- Combining forward selection and backward elimination:
 - The stepwise forward selection and backward elimination methods can be combined
 - At each step, the procedure selects the best attribute and removes the worst from among the remaining attributes.
Attribute Subset Selection

- **Decision tree induction:**
 - Decision tree algorithms, such as ID3, C4.5, and CART, were originally intended for classification.
 - Decision tree induction constructs a flowchart-like structure where each internal (nonleaf) node denotes a test on an attribute, each branch corresponds to an outcome of the test, and each external (leaf) node denotes a class prediction.
 - At each node, the algorithm chooses the “best” attribute to partition the data into individual classes.
 - When decision tree induction is used for attribute subset selection, a tree is constructed from the given data.
 - All attributes that do not appear in the tree are assumed to be irrelevant.
Attribute Subset Selection

- Decision tree induction

 Initial attribute set:
 \(\{A_1, A_2, A_3, A_4, A_5, A_6\} \)

 ![Decision Tree Diagram]

 => Reduced attribute set:
 \(\{A_1, A_4, A_6\} \)

Data Transformation
Discretization
Discretization

Data Discretization:

- Dividing the range of a continuous attribute into intervals
- Interval labels can then be used to replace actual data values
- Reduce the number of values for a given continuous attribute
- Some classification algorithms only accept categorical attributes.
- This leads to a concise, easy-to-use, knowledge-level representation of mining results.
Discretization

Discretization techniques can be categorized based on whether it uses class information, as:

- **Supervised discretization**
 - the discretization process uses class information

- **Unsupervised discretization**
 - the discretization process does not use class information
Discretization

Discretization techniques can be categorized based on which direction it proceeds, as:

- **Top-down**
 - If the process starts by first finding one or a few points (called split points or cut points) to split the entire attribute range, and then repeats this recursively on the resulting intervals

- **Bottom-up**
 - starts by considering all of the continuous values as potential split-points,
 - removes some by merging neighborhood values to form intervals, and then recursively applies this process to the resulting intervals.
Discretization

- Typical methods:
 - Binning
 - Top-down split, unsupervised,
 - Clustering analysis (covered above)
 - Either top-down split or bottom-up merge, unsupervised
 - Interval merging by χ^2 Analysis:
 - unsupervised, bottom-up merge

All the methods can be applied recursively
Binning

- The sorted values are distributed into a number of buckets, or bins, and then replacing each bin value by the bin mean or median.
- **Binning** is a top-down splitting technique based on a specified number of bins.
- **Binning** is an unsupervised discretization technique, because it does not use class information.

Binning methods:
- Equal-width (distance) partitioning
- Equal-depth (frequency) partitioning
Equal-width (distance) partitioning

- Divides the range into N intervals of equal size: uniform grid
- if A and B are the lowest and highest values of the attribute, the width of intervals will be: $W = (B - A)/N$.
- The most straightforward, but outliers may dominate presentation
- Skewed data is not handled well
Equal-width (distance) partitioning

- Sorted data for price (in dollars):
 - 4, 8, 15, 21, 21, 24, 25, 28, 34
- \[W = \frac{(B - A)}{N} = \frac{34 - 4}{3} = 10 \]
 - Bin 1: 4-14, Bin 2: 15-24, Bin 3: 25-34

- Equal-width (distance) partitioning:
 - Bin 1: 4, 8
 - Bin 2: 15, 21, 21, 24
 - Bin 3: 25, 28, 34
Equal-depth (frequency) partitioning

- Equal-depth (frequency) partitioning
 - Divides the range into N intervals, each containing approximately same number of samples
 - Good data scaling
Equal-depth (frequency) partitioning

- Sorted data for price (in dollars):
 - 4, 8, 15, 21, 21, 24, 25, 28, 34

- Equal-depth (frequency) partitioning:
 - Bin 1: 4, 8, 15
 - Bin 2: 21, 21, 24
 - Bin 3: 25, 28, 34
Cluster Analysis

- Cluster analysis is a popular data discretization method.
- A clustering algorithm can be applied to discretize a numerical attribute, A, by partitioning the values of A into clusters or groups.
- Clustering takes the distribution of A into consideration, as well as the closeness of data points, and therefore is able to produce high-quality discretization results.
Cluster Analysis

- Clustering can be used to generate a concept hierarchy for A by following either a top-down splitting strategy or a bottom-up merging strategy, where each cluster forms a node of the concept hierarchy.

- In the former, each initial cluster or partition may be further decomposed into several subclusters, forming a lower level of the hierarchy.

- In the latter, clusters are formed by repeatedly grouping neighboring clusters in order to form higher-level concepts.
Interval Merge by χ^2 Analysis

- **ChiMerge:**
 - It is a bottom-up method
 - Find the best neighboring intervals and merge them to form larger intervals recursively
 - The method is **supervised** in that it uses class information.
 - The basic notion is that for accurate discretization, the relative class frequencies should be fairly consistent within an interval.
 - Therefore, if two adjacent intervals have a very similar distribution of classes, then the intervals can be merged. Otherwise, they should remain separate.
 - ChiMerge treats intervals as discrete categories
Interval Merge by χ^2 Analysis

- The ChiMerge method:
 - Initially, each distinct value of a numerical attribute A is considered to be one interval
 - χ^2 tests are performed for every pair of adjacent intervals
 - Adjacent intervals with the least χ^2 values are merged together, since low χ^2 values for a pair indicate similar class distributions
 - This merge process proceeds recursively until a predefined stopping criterion is met (such as significance level, max-interval, max inconsistency, etc.)
Generalization
Generalization is the generation of concept hierarchies for categorical data.

Categorical attributes have a finite (but possibly large) number of distinct values, with no ordering among the values.

Examples include:
- geographic location,
- job category, and
- itemtype.
Example: Generalization

- A relational database or a dimension location of a data warehouse may contain the following group of attributes: street, city, province or state, and country.

- A user or expert can easily define a concept hierarchy by specifying ordering of the attributes at the schema level.

- A hierarchy can be defined by specifying the total ordering among these attributes at the schema level, such as:
 - street < city < province or state < country
References

- J. Han, M. Kamber, **Data Mining: Concepts and Techniques**, Elsevier Inc. (2006). (Chapter 2)
The end