
Data Mining
Part 4. Prediction

4.2 Decision Tree

Decision Tree

Fall 2009

Instructor: Dr. Masoud Yaghini

Outline

� Introduction

� Basic Algorithm for Decision Tree Induction

� Attribute Selection Measures

– Information Gain

– Gain Ratio

Decision Tree

– Gain Ratio

– Gini Index

� Tree Pruning

� Scalable Decision Tree Induction Methods

� References

1. Introduction

Decision Tree

Decision Tree Induction

� Classification by Decision tree

– the learning of decision trees from class-labeled

training instances.

� A decision tree is a flowchart-like tree structure,

where

– each internal node (non-leaf node) denotes a test on

Decision Tree

– each internal node (non-leaf node) denotes a test on

an attribute

– each branch represents an outcome of the test

– each leaf node (or terminal node) holds a class label.

– The topmost node in a tree is the root node.

An example

� This example represents the concept

buys_computer

� It predicts whether a customer at AllElectronics is
likely to purchase a computer.

Decision Tree

An example: Training Dataset

Decision Tree

An example: A Decision Tree for “buys_computer”

Decision Tree

Decision Tree Induction

� How are decision trees used for classification?

– Given an instance, X, for which the associated class

label is unknown,

– The attribute values of the instance are tested against

the decision tree

– A path is traced from the root to a leaf node, which

Decision Tree

– A path is traced from the root to a leaf node, which

holds the class prediction for that instance.

Decision Tree Induction

� Advantages of decision tree

– The construction of decision tree classifiers does not

require any domain knowledge or parameter setting.

– Decision trees can handle high dimensional data.

– Easy to interpret for small-sized trees

– The learning and classification steps of decision tree

Decision Tree

– The learning and classification steps of decision tree

induction are simple and fast.

– Accuracy is comparable to other classification

techniques for many simple data sets

– Convertible to simple and easy to understand

classification rules

Decision Tree

� Decision tree algorithms have been used for

classification in many application areas, such as:

– Medicine

– Manufacturing and production

– Financial analysis

Decision Tree

– Astronomy

– Molecular biology.

2. Basic Algorithm

Decision Tree

Decision Tree Algorithms

� ID3 (Iterative Dichotomiser) algorithm

– Developed by J. Ross Quinlan

– During the late 1970s and early 1980s

� C4.5 algorithm

– Quinlan later presented C4.5 (a successor of ID3)

– Became a benchmark to which newer supervised

Decision Tree

– Became a benchmark to which newer supervised

learning algorithms are often compared.

– Commercial successor: C5.0

� CART (Classification and Regression Trees) algorithm

– The generation of binary decision trees

– Developed by a group of statisticians

Decision Tree Algorithms

� ID3, C4.5, and CART adopt a greedy (i.e.,

nonbacktracking) approach in which decision

trees are constructed in a top-down recursive

divide-and-conquer manner.

� Most algorithms for decision tree induction also

follow such a top-down approach, which starts

Decision Tree

follow such a top-down approach, which starts

with a training set of instances and their

associated class labels.

� The training set is recursively partitioned into

smaller subsets as the tree is being built.

Basic Algorithm

� Basic algorithm (a greedy algorithm)

– Tree is constructed in a top-down recursive divide-

and-conquer manner

– At start, all the training examples are at the root

– Attributes are categorical (if continuous-valued, they

are discretized in advance)

Decision Tree

are discretized in advance)

– Examples are partitioned recursively based on

selected attributes

– Test attributes are selected on the basis of a heuristic

or statistical measure (e.g., information gain)

Basic Algorithm

� Algorithm: Generate_decision_tree

� Parameters:

– D, a data set

– Attribute_list : a list of attributes describing the

instances

Decision Tree

– Attribute_selection_method : a heuristic procedure for

selecting the attribute

Basic Algorithm

� Step 1

– The tree starts as a single node, N, representing the

training instances in D

� Steps 2

– If the instances in D are all of the same class, then

node N becomes a leaf and is labeled with that class.

Decision Tree

node N becomes a leaf and is labeled with that class.

� Steps 3

– if attribute_list is empty then return N as a leaf node

labeled with the majority class in D

– Steps 3 is terminating conditions.

Basic Algorithm

� Step 4

– the algorithm calls Attribute_selection_method to

determine the splitting criterion.

– The splitting criterion tells us which attribute to test at

node N by determining the “best” way to separate or

partition the instances in D into individual classes

Decision Tree

partition the instances in D into individual classes

– The splitting criterion indicates the splitting attribute

and may also indicate either a split-point or a splitting

subset.

Basic Algorithm

� Step 5

– The node N is labeled with the splitting criterion,

which serves as a test at the node

� Steps 6

– A branch is grown from node N for each of the

outcomes of the splitting criterion.

Decision Tree

outcomes of the splitting criterion.

– The instances in D are partitioned accordingly

– Let A be the splitting_attribute, there are three

possible scenarios for branching:

� A is discrete-valued

� A is continuous-valued

� A is discrete-valued and a binary treemust be produced

Basic Algorithm

Decision Tree

Basic Algorithm

� In scenario a (A is discrete-valued)

– the outcomes of the test at node N correspond directly

to the known values of A.

– Because all of the instances in a given partition have

the same value for A, then A need not be considered

in any future partitioning of the instances.

Decision Tree

in any future partitioning of the instances.

– Therefore, it is removed from attribute_list.

Basic Algorithm

� In scenario b (A is continuous-valued)

– the test at node N has two possible outcomes,

corresponding to the conditions A ≤ split_point and A

> split_point, respectively.

– where split_point is the split-point returned by

Attribute_selection_method as part of the splitting

Decision Tree

Attribute_selection_method as part of the splitting

criterion.

– The instances are partitioned such that D1 holds the

subset of class-labeled instances in D for which A ≤

split_point, while D2 holds the rest.

Basic Algorithm

� In scenario c (A is discrete-valued and a binary

tree must be produced)

– The test at node N is of the form “A œ SA?”.

– SA is the splitting subset for A, returned by

Attribute_selection_method as part of the splitting

criterion.

Decision Tree

criterion.

Basic Algorithm

� Step 7

– for each outcome j of splitting_criterion

� let Dj be the set of data tuples in D satisfying outcome j

� if Dj is empty

– then attach a leaf labeled with the majority class in D to node N;

� Else

Decision Tree

� Else

– attach the node by Generate_decision_tree(Dj, attribute list) to

node N

� Step 8

– The resulting decision tree is returned.

Basic Algorithm

� The algorithm stops only when any one of the

following terminating conditions is true:

1. All of the instances in partition D (represented at

node N) belong to the same class (steps 2)

2. There are no remaining attributes for further

partitioning (step 3).

Decision Tree

partitioning (step 3).

3. There are no instances for a given branch, that is, a

partition Dj is empty (step 7).

Decision Tree Issues

� Attribute selection measures

– During tree construction, attribute selection measures

are used to select the attribute that best partitions the

instances into distinct classes.

� Tree pruning

– When decision trees are built, many of the branches may

Decision Tree

– When decision trees are built, many of the branches may

reflect noise or outliers in the training data.

– Tree pruning attempts to identify and remove such

branches, with the goal of improving classification

accuracy on unseen data.

� Scalability

– Scalability issues related to the induction of decision trees

from large databases.

3. Attribute Selection Measures

Decision Tree

Attribute Selection Measures

� Which attribute to select?

Decision Tree

Attribute Selection Measures

Decision Tree

Attribute Selection Measures

� Which is the best attribute?

– Want to get the smallest tree

– choose the attribute that produces the “purest” nodes

� Attribute selection measure

– a heuristic for selecting the splitting criterion that

Decision Tree

“best” separates a given data partition, D, of class-

labeled training instances into individual classes.

– If we were to split D into smaller partitions according

to the outcomes of the splitting criterion, ideally each

partition would be pure (i.e., all of the instances that

fall into a given partition would belong to the same

class).

Attribute Selection Measures

� Attribute selection measures are also known as

splitting rules because they determine how the

instances at a given node are to be split.

� The attribute selection measure provides a

ranking for each attribute describing the given

training instances.

Decision Tree

training instances.

� The attribute having the best score for the

measure is chosen as the splitting attribute for

the given instances.

Attribute Selection Measures

� If the splitting attribute is continuous-valued or if

we are restricted to binary trees then,

respectively, either a split point or a splitting

subset must also be determined as part of the

splitting criterion.

Three popular attribute selection measures:

Decision Tree

� Three popular attribute selection measures:

– Information gain

– Gain ratio

– Gini index

Attribute Selection Measures

� The notation used herein is as follows.

– Let D, the data partition, be a training set of class-

labeled instances.

– Suppose the class label attribute has m distinct values

defining m distinct classes, Ci (for i = 1, … , m)

– Let C be the set of instances of class C in D.

Decision Tree

– Let Ci,D be the set of instances of class Ci in D.

– Let |D| and |Ci,D | denote the number of instances in D
and Ci,D, respectively.

Information Gain

Decision Tree

Information Gain

Attribute Selection Measures

� Select the attribute with the highest information

gain as the splitting attribute

� This attribute minimizes the information needed

to classify the instances in the resulting partitions

and reflects the least impurity in these partitions.

Decision Tree

� ID3 uses information gain as its attribute

selection measure.

� Entropy (impurity)
– High Entropy means X is from a uniform (boring)

distribution

– Low Entropy means X is from a varied (peaks and
valleys) distribution

Attribute Selection Measures

� Need a measure of node impurity:

Non-homogeneous, Homogeneous,

Decision Tree

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

Attribute Selection Measures

� Let pi be the probability that an arbitrary instance

in D belongs to class Ci, estimated by |Ci, D|/|D|

� Expected information (entropy) needed to

classify an instance in D is given by:

)(log)(
m

ppDInfo ∑−=

Decision Tree

� Info(D) (entropy of D)

– the average amount of information needed to identify

the class label of an instance in D.

– The smaller information required, the greater the

purity.

)(log)(2

1

i

i

i ppDInfo ∑
=

−=

Attribute Selection Measures

� At this point, the information we have is based

solely on the proportions of instances of each

class.

� A log function to the base 2 is used, because the

information is encoded in bits (It is measured in

bits).

Decision Tree

bits).

Attribute Selection Measures

� Need a measure of node impurity:

Non-homogeneous, Homogeneous,

Decision Tree

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

() 0.469Info D =() 1Info D =

Attribute Selection Measures

� Suppose attribute A can be used to split D into v

partitions or subsets, {D1, D2, … , Dv}, where Dj

contains those instances in D that have outcome

aj of A.

� Information needed (after using A to split D) to

classify D:

Decision Tree

classify D:

� The smaller the expected information (still)

required, the greater the purity of the partitions.

)(
||

||
)(

1

j

v

j

j

A D Info
D

D
DInfo ×=∑

=

Attribute Selection Measures

� Information gained by branching on attribute A

� Information gain increases with the average

(D)InfoInfo(D)Gain(A) A−=

Decision Tree

� Information gain increases with the average

purity of the subsets

� Information gain: information needed before

splitting – information needed after splitting

– The attribute that has the highest information gain

among the attributes is selected as the splitting

attribute.

Example: AllElectronics

� This table presents a training set, D.

Decision Tree

Example: AllElectronics

� The class label attribute, buys_computer, has two

distinct values (namely, {yes, no}); therefore,

there are two distinct classes (that is, m = 2).

� Let class C1 correspond to yes and class C2
correspond to no.

Decision Tree

� The expected information needed to classify an

instance in D:

940.0)
14

5
(log

14

5
)

14

9
(log

14

9
)5,9()(22 =−−== IDInfo

Example: AllElectronics

� Next, we need to compute the expected

information requirement for each attribute.

� Let’s start with the attribute age. We need to look

at the distribution of yes and no instances for

each category of age.

Decision Tree

– For the age category youth,

� there are two yes instances and three no instances.

– For the category middle_aged,

� there are four yes instances and zero no instances.

– For the category senior,

� there are three yes instances and two no instances.

Example: AllElectronics

� The expected information needed to classify an instance

in D if the instances are partitioned according to age is

)2,3(
14

5
)0,4(

14

4
)3,2(

14

5
)(IIIDInfo age ++=

Decision Tree

Example: AllElectronics

� The gain in information from such a partitioning

would be

� Similarly

bits 0.246 0.694-0.940DInfoDInfoageGain age ==−=)()()(

029.0)(=incomeGain

Decision Tree

� Because age has the highest information gain

among the attributes, it is selected as the splitting

attribute.

048.0)_(

151.0)(

029.0)(

=

=

=

ratingcreditGain

studentGain

incomeGain

Example: AllElectronics

� Branches are grown for each outcome of age. The

instances are shown partitioned accordingly.

Decision Tree

Example: AllElectronics

� Notice that the instances falling into the partition

for age = middle_aged all belong to the same

class.

� Because they all belong to class “yes,” a leaf

should therefore be created at the end of this

branch and labeled with “yes.”

Decision Tree

branch and labeled with “yes.”

Example: AllElectronics

� The final decision tree returned by the algorithm

Decision Tree

Example: Weather Problem

Decision Tree

Example: Weather Problem

Decision Tree

Example: Weather Problem

� attribute Outlook:

693.0)2,3(
14

5
)0,4(

14

4
)3,2(

14

5
)(=++= IIIDInfo outlook

940.0)
14

5
(log

14

5
)

14

9
(log

14

9
)5,9()(22 =−−== IDInfo

Decision Tree

141414

Example: Weather Problem

� Information gain: information before splitting –
information after splitting:

gain(Outlook) = 0.940 – 0.693
= 0.247 bits

� Information gain for attributes from weather data:

Decision Tree

� Information gain for attributes from weather data:

gain(Outlook) = 0.247 bits
gain(Temperature) = 0.029 bits
gain(Humidity) = 0.152 bits
gain(Windy) = 0.048 bits

Example: Weather Problem

� Continuing to split

Decision Tree

Example: Weather Problem

� Continuing to split

Decision Tree

Example: Weather Problem

� Final decision tree

Decision Tree

Continuous-Value Attributes

� Let attribute A be a continuous-valued attribute

� Standard method: binary splits

� Must determine the best split point for A

– Sort the value A in increasing order

– Typically, the midpoint between each pair of adjacent

Decision Tree

– Typically, the midpoint between each pair of adjacent

values is considered as a possible split point

� (ai+ai+1)/2 is the midpoint between the values of ai and ai+1

– Therefore, given v values of A, then v-1 possible splits

are evaluated.

– The point with the minimum expected information

requirement for A is selected as the split-point for A

Continuous-Value Attributes

� Split:

– D1 is the set of instances in D satisfying A ≤ split-

point, and D2 is the set of instances in D satisfying A

> split-point

� Split on temperature attribute:

Decision Tree

– E.g. temperature < 71.5: yes/4, no/2

temperature > 71.5: yes/5, no/3

– Info = 6/14 info([4,2]) + 8/14 info([5,3])

= 0.939 bits

Gain Ratio

Decision Tree

Gain ratio

� Problem of information gain

– When there are attributes with a large number of

values

– Information gain measure is biased towards attributes

with a large number of values

– This may result in selection of an attribute that is non-

Decision Tree

– This may result in selection of an attribute that is non-

optimal for prediction

Gain ratio

� Weather data with ID code

Decision Tree

Gain ratio

Decision Tree

� Information gain is maximal for ID code

(namely 0.940 bits)

Gain ratio

� Gain ratio

– a modification of the information gain

– C4.5 uses gain ratio to overcome the problem

� Gain ratio applies a kind of normalization to

information gain using a split information

Decision Tree

� The attribute with the maximum gain ratio is selected as

the splitting attribute.

Example: Various Partition Numbers

Class Lable

Yes No Total

Attribute 1 Value 1 4 8 12

Value 2 4 8 12

Attribute 2 Value 1 2 4 6

Value 2 2 4 6

Decision Tree

Value 2 2 4 6

Value 3 2 4 6

Value 4 2 4 6

Gain SplitInfo Gain Ratio

Attribute 1 0.082 1.000 0.082

Attribute 2 0.082 2.000 0.041

Example: Unbalanced Partitions

Class Label

Yes No Total

Attribute 1 Value 1 2 4 6

Value 2 6 12 18

Attribute 2 Value 1 4 8 12

Value 2 4 8 12

Decision Tree

1)
24

12
(log

24

12
)

24

12
(log

24

12
)(222 =×−×−=DSplitInfo

811.0)
24

18
(log

24

18
)

24

6
(log

24

6
)(221 =×−×−=DSplitInfo

Gain SplitInfo Gain Ratio

Attribute 1 0.082 0.811 0.101

Attribute 2 0.082 1 0.082

Gain ratio

� Example

– Computation of gain ratio for the attribute income.

– A test on income splits the data into three partitions,

namely low, medium, and high, containing four, six,

and four instances, respectively.

– Computation of the gain ratio of income:

Decision Tree

– Computation of the gain ratio of income:

– Gain(income) = 0.029

– GainRatio(income) = 0.029/0.926 = 0.031

926.0)
14

4
(log

14

4
)

14

6
(log

14

6
)

14

4
(log

14

4
)(222 =×−×−×−=DSplitInfo A

Gain ratio

� Gain ratios for weather data

Decision Tree

Gini Index

Decision Tree

Gini Index

� Gini index

– is used in CART algorithm.

– measures the impurity of D

– considers a binary split for each attribute.

� If a data set D contains examples from m

Decision Tree

classes, gini index, gini(D) is defined as

– where pi is the relative frequency of class i in D

∑
=

−=
m

i

piDgini

1

21)(

Gini Index of a Discrete-valued
Attribute

� To determine the best binary split on A, we

examine all of the possible subsets that can be

formed using known values of A.

� Need to enumerate all the possible splitting

points for each attribute

Decision Tree

� If A is a discrete-valued attribute having v distinct

values, then there are 2v – 2 possible subsets.

Gini Index

� When considering a binary split, we compute a weighted

sum of the impurity of each resulting partition.

� If a data set D is split on A into two subsets D1 and D2,

the gini index gini(D) is defined as

)(
||

||
)(

||

||
)(2

2
1

1
DGini

D
DGini

D
DGini A +=

Decision Tree

� First we calculate Gini index for all subsets of an attribute,

then the subset that gives the minimum Gini index for that
attribute is selected.

)(
||

)(
||

)(21 DGini
D

DGini
D

DGini A +=

Gini Index for Continuous-valued Attributes

� For continuous-valued attributes, each possible

split-point must be considered.

� The strategy is similar to that described for

information gain.

� The point giving the minimum Gini index for a

Decision Tree

given (continuous-valued) attribute is taken as

the split-point of that attribute.

� For continuous-valued attributes

– May need other tools, e.g., clustering, to get the

possible split values

– Can be modified for categorical attributes

Gini Index

� The reduction in impurity that would be incurred

by a binary split on attribute A is

� The attribute that maximizes the reduction in

)()()(DGiniDGiniAGini
A

−=∆

Decision Tree

� The attribute that maximizes the reduction in

impurity (or, equivalently, has the minimum Gini

index) is selected as the splitting attribute.

Gini Index

� Example:
– D has 9 instances in buys_computer = “yes” and 5 in “no”

– The impurity of D:

459.0
14

5

14

9
1)(

22

=







−








−=Dgini

Decision Tree

– the attribute income partitions:

� {low, medium} & {high}

� {low, high} & {medium}

� {low} & {medium, high}

Gini Index

� Example:
– Suppose the attribute income partitions D into 10 in D1: {low,

medium} and 4 in D2

Decision Tree

– Similarly, the Gini index values for splits on the

remaining subsets are:

� For {low, high} and {medium} is 0.315

� For {low} and {medium, high} is 0.300

Gini Index

� The attribute income and splitting subsets {low}

and {medium, high} and give the minimum Gini

index overall, with a reduction in impurity of:

)()()(DGiniDGiniAGini
A

−=∆

Decision Tree

� Now we should calculate DGini for other

attributes including age, student, and credit rate.

� Then we can choose the best attribute for

splitting.

159.0300.0459.0)(=−=∆ incomeGini

Comparing Attribute Selection Measures

� The three measures, in general, return good

results but

– Information gain:

� biased towards multivalued attributes

– Gain ratio:

� tends to prefer unbalanced splits in which one partition is

Decision Tree

� tends to prefer unbalanced splits in which one partition is
much smaller than the others

– Gini index:

� biased to multivalued attributes

� has difficulty when # of classes is large

Other Attribute Selection Measures

� CHAID: a popular decision tree algorithm, measure
based on χ2 test for independence

� C-SEP: performs better than information Gain and
Gini index in certain cases

� G-statistics: has a close approximation to χ2
distribution

Decision Tree

distribution

� MDL (Minimal Description Length) principle: the
simplest solution is preferred

� Multivariate splits: partition based on multiple variable
combinations

– CART: can find multivariate splits based on a linear

combination of attributes.

Attribute Selection Measures

� Which attribute selection measure is the best?

– All measures have some bias.

– Most give good results, none is significantly superior

than others

– It has been shown that the time complexity of decision

tree induction generally increases exponentially with

Decision Tree

tree induction generally increases exponentially with

tree height.

– Hence, measures that tend to produce shallower trees

may be preferred.

� e.g., with multiway rather than binary splits, and that favor
more balanced splits

4. Tree Pruning

Decision Tree

Tree Pruning

� Overfitting: An induced tree may overfit the

training data

– Too many branches, some may reflect anomalies due

to noise or outliers

– Poor accuracy for unseen samples

Tree Pruning

Decision Tree

� Tree Pruning

– To prevent overfitting to noise in the data

– Pruned trees tend to be smaller and less complex

and, thus, easier to comprehend.

– They are usually faster and better at correctly

classifying independent test data.

Tree Pruning

� An unpruned decision tree and a pruned version of it.

Decision Tree

Tree Pruning

� Two approaches to avoid overfitting

– Prepruning

� stop growing a branch when information becomes unreliable

– Postpruning

� take a fully-grown decision tree and remove unreliable
branches

Decision Tree

branches

� Postpruning preferred in practice

Prepruning

� Based on statistical significance test

– Stop growing the tree when there is no statistically
significant association between any attribute and the

class at a particular node

� Most popular test: chi-squared test

ID3 used chi-squared test in addition to

Decision Tree

� ID3 used chi-squared test in addition to

information gain

– Only statistically significant attributes were allowed to

be selected by information gain procedure

Postpruning

� Postpruning: first, build full tree & Then, prune it

� Two pruning operations:

– Subtle replacement

– Subtree raising

� Possible strategies: error estimation and

Decision Tree

� Possible strategies: error estimation and

significance testing

Subtree replacement

� Subtle replacement: Bottom-up

– To select some subtrees and replace them with single leaves

Decision Tree

Subtree raising

� Subtree raising

– Delete node, redistribute instances

– Slower than subtree replacement

Decision Tree

5. Scalable Decision Tree Induction

Methods

Decision Tree

Methods

Scalable Decision Tree Induction Methods

� Scalability

– Classifying data sets with millions of examples and

hundreds of attributes with reasonable speed

� ID3, C4.5, and CART

– The existing decision tree algorithms has been well

established for relatively small data sets.

Decision Tree

established for relatively small data sets.

� The pioneering decision tree algorithms that we

have discussed so far have the restriction that the

training instances should reside in memory.

Scalable Decision Tree Induction Methods

� SLIQ

– Builds an index for each attribute and only class list

and the current attribute list reside in memory

� SPRINT

– Constructs an attribute list data structure

� PUBLIC

Decision Tree

� PUBLIC

– Integrates tree splitting and tree pruning: stop growing

the tree earlier

� RainForest

– Builds an AVC-list (attribute, value, class label)

� BOAT

– Uses bootstrapping to create several small samples

References

Decision Tree

References

� J. Han, M. Kamber, Data Mining: Concepts and

Techniques, Elsevier Inc. (2006). (Chapter 6)

� I. H. Witten and E. Frank, Data Mining: Practical

Machine Learning Tools and Techniques, 2nd

Decision Tree

Edition, Elsevier Inc., 2005. (Chapter 6)

The end

Decision Tree

