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Introduction

� Bayesian classifiers 
– A statistical classifiers

– performs probabilistic prediction, i.e., predicts class membership 
probabilities, such as the probability that a given instance 
belongs to a particular class. 

� Foundation
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Foundation
– Based on Bayes’ Theorem. 

� Performance
– A simple Bayesian classifier, naïve Bayesian classifier, has 

comparable performance with decision tree and selected neural 
network classifiers

– have also exhibited high accuracy and speed when applied to 
large databases.



Introduction

� Incremental

– Each training example can incrementally 
increase/decrease the probability that a hypothesis is 
correct

� Popular methods

– Naïve Bayesian classifier
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– Naïve Bayesian classifier

– Bayesian belief networks



Introduction

� Naïve Bayesian classifier

– Naïve Bayesian classifiers assume that the effect of 
an attribute value on a given class is independent of 
the values of the other attributes.

– This assumption is called class conditional 
independence.
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independence.

– It is made to simplify the computations involved and, 
in this sense, is considered “naïve.”

– Naïve Bayesian classifier, has comparable 
performance with decision tree and selected neural 
network classifiers



Introduction

� Bayesian belief networks

– Bayesian belief networks are graphical models, which 
unlike naïve Bayesian classifiers, allow the 
representation of dependencies among subsets of 
attributes.

– Bayesian belief networks can also be used for 
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– Bayesian belief networks can also be used for 
classification.
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Bayes’ Theorem

� Let :

– X: be a data sample: class label is unknown

– H: a hypothesis that X belongs to class C 

– P(H | X) (Determined by classifier)

� The probability that instance X belongs to class C

Bayesian Classification

The probability that instance X belongs to class C

� We know the attribute description of X.

– P(H): The probability of H

– P(X): The probability that sample data is observed

– P(X | H) is the probability of X conditioned on H. 



Bayes’ Theorem

� How are these probabilities estimated?

– P(H), P(X | H), and P(X) may be estimated from the 
given data.

– Bayes’ theorem is useful in that it provides a way of 
calculating the P(H | X), from P(H), P(X | H), and P(X).

� Bayes’ theorem is
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� Bayes’ theorem is
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Bayes’ Theorem

� Example:

– Suppose customers described by the attributes age 
and income

– X: a 35-year-old customer with an income of $40,000.

– H: the hypothesis that the customer will buy a 
computer.
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computer.

– P(H | X): the probability that customer X will buy a 
computer given that we know the customer’s age and 
income.

– P(H): the probability that any given customer will buy 
a computer, regardless of age and income



Bayes’ Theorem

� Example: (cont.)

– P(X): the probability that a person from our set of 
customers is 35 years old and earns $40,000.

– P(X | H): the probability that a customer, X, is 35 
years old and earns $40,000, given that we know the 
customer will buy a computer.
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customer will buy a computer.



Bayes’ Theorem

� Practical difficulty

– require initial knowledge of many probabilities, 
significant computational cost

� Now that we’ve got that out of the way, in the 
next section, we will look at how Bayes’ theorem 
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next section, we will look at how Bayes’ theorem 
is used in the naive Bayesian classifier.
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Naïve Bayesian Classification

� Naïve bayes classifier use all the attributes 

� Two assumptions: 

– Attributes are equally important

– Attributes are statistically independent 

� I.e., knowing the value of one attribute says nothing about the 
value of another
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value of another

� Equally important & independence assumptions 
are never correct in real-life datasets



Naïve Bayesian Classification

� The naïve Bayesian classifier works as follows:

1. Let D be a training set of instances and their 
associated class labels, 

– each instance is represented by an n-dimentional
attribute vector X = (x1, x2, …, xn)
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2. Suppose there are m classes C1, C2, …, Cm.

– The classifier will predict that X belongs to the class 
Ci if and only if:



Naïve Bayesian Classification

– The probability can be derived from Bayes’ theorem:

3. Since P(X) is constant for all classes, only the 
follows need to be maximized 
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follows need to be maximized 

– Note that the class prior probabilities may be 
estimated by P(Ci)=|Ci, D| / |D|,

– Where |Ci, D| is the number of training instances of 
class Ci in D.
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Naïve Bayesian Classification

4. it would be extremely computationally 
expensive to compute P(X | Ci)

– A simplified assumption: attributes are class 
conditional independence (i.e., no dependence 
relation between attributes)

– Thus: 
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– Thus: 

– This greatly reduces the computation cost: Only 
counts the class distribution
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Naïve Bayesian Classification

� We can estimate the probabilities P(xk | Ci) from 
the training dataset.

� Let xk refers to the value of attribute Ak for 
instance X. 

� The attribute can be:
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– Categorical valued

– Continuous valued

� If Ak is categorical

– P(xk|Ci) is the # of tuples in Ci having value xk for Ak

divided by |Ci, D| (# of tuples of Ci in D)



Naïve Bayesian Classification

� If Ak is continous-valued

– P(xk|Ci) is usually computed based on Gaussian 
distribution with a mean µ and standard deviation σ:
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– and P(xk | Ci) is 

– µCi and Ci : the mean and standard deviation, 
respectively, of the values of attribute Ak for training 
instances of class Ci. 
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Naïve Bayesian Classification

� Example:

– let X = (35, $40,000), where A1 and A2 are the 
attributes age and income. 

– Let the class label attribute be buys_computer. 

– The associated class label for X is yes (i.e., buys 
computer = yes). 
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computer = yes). 

– For attribute age and this class, we have µ = 38 years 
and  = 12.

– We can plug these quantities, along with x1 = 35 for 
our instance X into g(x, µ, ) Equation in order to 
estimate P(age = 35 | buys computer = yes). 



5. The classifier predicts that the class label of 
instance X is the class Ci if and only if
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– In other words, the predicted class label is the class 
Ci for which P(X | Ci) P(Ci) is the maximum.



Example 1: AllElectronics
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Example 1: AllElectronics

� We wish to predict the class label of a instance 
using naïve Bayesian classification given the 
AllElectronics training data

� The data instances are described by the 
attributes age, income, student, and credit rating. 
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� The class label attribute, buys _computer, has 
two distinct values 

� Let 

– C1 correspond to the class buys computer = yes 

– C2 correspond to the class buys computer = no



Example: AllElectronics
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Example: AllElectronics

� The instance we wish to classify is

X = (age = youth, 

income = medium, 

student = yes, 

credit rating = fair)

Bayesian Classification

� We need to maximize P(X | Ci) P(Ci), for i = 1, 2. 

� P(Ci), the probability of each class, can be computed 
based on the training data



Example: AllElectronics

� The probability of each class:

� The conditional probabilities P(X | Ci) for i = 1, 2:
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Example: AllElectronics

� Using the above probabilities, we obtain:
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� Similarly,



Example: AllElectronics

� To find the class we compute P(X | Ci) P(Ci):
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� Therefore, the naïve Bayesian classifier predicts 
buys computer = yes for instance X.



Avoiding the 0-Probability Problem

� We need to compute P(X | Ci) for each class (i = 
1, 2, … , m) in order to find P(X | Ci)P(Ci)

� Naïve Bayesian prediction requires each 
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� Naïve Bayesian prediction requires each 
conditional probability be non-zero.  

– Otherwise, the predicted probability will be zero



Avoiding the 0-Probability Problem

� Example:

– for the attribute-value pair student = yes of X

– we need two counts

� the number of customers who are students and for which 
buys_computer = yes, which contributes to 
P(X | buys_computer = yes)
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P(X | buys_computer = yes)

� the number of customers who are students and for which 
buys_computer = no, which contributes to 
P(X | buys_computer = no).

– But if there are no training instances representing 
students for the class buys computer = no, resulting in 
P(student = yes | buys_computer = no)=0

– Plugging this zero value into Equation P(X | Ci) would 
return a zero probability for P(X | Ci)



Avoiding the 0-Probability Problem

� Laplacian correction (Laplacian estimator)

– We assume that our training database, D, is so large 

– Adding 1 to each case 

– It makes a negligible difference in the estimated 
probability value

– It would conveniently avoid the case of probability 

Bayesian Classification

– It would conveniently avoid the case of probability 
values of zero.



Avoiding the 0-Probability Problem

� Use Laplacian correction (or Laplacian
estimator)

– Adding 1 to each case

� Prob(income = low) = 1/1003

� Prob(income = medium) = 991/1003

� Prob(income = high) = 11/1003
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� Prob(income = high) = 11/1003

– The “corrected” prob. estimates are close to their 
“uncorrected” counterparts



Avoiding the 0-Probability Problem

� Example:

– Suppose that for the class buys_computer = yes in 
training database, D, containing 1,000 instances

– We have 

� 0 instances with income = low, 

� 990 instances with income = medium, and 
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� 990 instances with income = medium, and 

� 10 instances with income = high. 

– The probabilities of these events are 0 (from 0/1000), 
0.990 (from 999/1000), and 0.010 (from 10/1,000)

– Using the Laplacian correction for the three quantities, 
we pretend that we have 1 more instance for each 
income-value pair. 



Avoiding the 0-Probability Problem

– In this way, we instead obtain the following 
probabilities (rounded up to three decimal places):
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Example 2: Weather Problem
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Weather Problem
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Weather Problem
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� E.g. P(outlook=sunny | play=yes) = 2/9

P(windy=true | play=No) = 3/5



Probabilities for weather data

� A new day:
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� Conversion into a probability by normalization:



Bayes’s rule

� The hypothesis H (class) is that play will be ‘yes’

P(H  | X) is 20.5%

� The evidence X is the particular combination of 
attribute values for the new day:

outlook = sunny

temperature = cool
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temperature = cool

humidity = high

windy = true



Weather data example
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The “zero-frequency problem”

� What if an attribute value doesn’t occur with every 
class value?

– e.g. “Humidity = high” for class “yes” Probability will be 
zero! 
P [Humidity=High | yes]=0

– A posteriori probability will also be zero!
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– A posteriori probability will also be zero!
Pr [yes | E]=0

– (No matter how likely the other values are!)

� Correction: add 1 to the count for every attribute 
value-class combination (Laplace estimator)

� Result: probabilities will never be zero!



Modified probability estimates

� In some cases adding a constant different from 1 
might be more appropriate

� Example: attribute outlook for class ‘yes’
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� Weights don’t need to be equal but they must 
sum to 1 (p1, p2, and p3 sum to 1)



Missing values

� Training: instance is not included in frequency count for 
attribute value-class combination

� Classification: attribute will be omitted from calculation

� Example: if the value of outlook were missing in the 
example
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– Likelihood of “yes” = 3/9 x 3/9 x 3/9 x 9/14 = 0.0238

– Likelihood of “no” = 1/5 x 4/5 x 3/5 x 5/14 = 0.0343

– P(“yes”) = 0.0238 / (0.0238 + 0.0343) = 41%

– P(“no”) = 0.0343 / (0.0238 + 0.0343) = 59%



Numeric attributes

� Usual assumption: attributes have a normal or Gaussian 
probability distribution

� The probability density function for the normal distribution 
is defined by two parameters:

� Sample mean µ
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� Standard deviation σ

� Then the density function f(x) is:



Statistics for weather data
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Example density value

� If we are considering a yes outcome when 
temperature has a value of 66

� We just need to plug x = 66, µ = 73, and σ = 6.2 
into the formula

� The value of the probability density function is:
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Classifying a new day

� A new day:
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Comments
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Missing values

� Missing values during training are not included in 
calculation of mean and standard deviation
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Naïve Bayesian Classifier: Comments

� Advantages 

– Easy to implement 

– Good results obtained in most of the cases

� Disadvantages

– Assumption: class conditional independence, 
therefore loss of accuracy
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therefore loss of accuracy

– Practically, dependencies exist among variables 

� How to deal with these dependencies?

– Bayesian Belief Networks



References
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The end
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